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Ultraslow vacancy-mediated tracer diffusion in two dimensions: The Einstein relation verified
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We study the dynamics of a charged tracer particle~TP! on a two-dimensional lattice, all sites of which
except one~a vacancy! are filled with identical neutral, hard-core particles. The particles move randomly by
exchanging their positions with the vacancy, subject to the hard-core exclusion. In the case when the charged
TP experiences a bias due to external electric fieldE ~which favors its jumps in the preferential direction!, we
determine exactly the limiting probability distribution of the TP position in terms of appropriate scaling

variables and the leading large-n (n being the discrete time! behavior of the TP mean displacementX̄n ; the

latter is shown to obey an anomalous, logarithmic lawuX̄nu5a0(uEu)ln(n). Comparing our results with earlier
predictions by Brummelhuis and Hilhorst@J. Stat. Phys.53, 249 ~1988!# for the TP diffusivity Dn in the
unbiased case, we infer that the Einstein relationmn5bDn between the TP diffusivity and the mobilitymn

5 limuEu→0(uX̄nu/uEun) holds in the leadingn order, despite the fact that bothDn andmn are not constant but
vanish asn→`. We also generalize our approach to the situation with very small but finite vacancy concen-

tration rv , in which case we find a ballistic-type lawuX̄nu5pa0(uEu)rvn. We demonstrate that here, again,
both Dn andmn , calculated in the linear inrv approximation, do obey the Einstein relation.

DOI: 10.1103/PhysRevE.66.031101 PACS number~s!: 05.40.Fb
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I. INTRODUCTION

Consider a square lattice of which each site except on
filled with a hard-core particle. The empty site is referred
as a ‘‘vacancy.’’ The particles move randomly on the lattic
their random walks being constrained by the condition t
each site can be at most singly occupied. More specifica
at each moment of timen51,2,3, . . . oneparticle selected
with probability 1/4 among the four particles surrounding t
vacancy will exchange its position with the vacancy. Ne
suppose that one selects one of the particles, ‘‘tags’’ it,
follows its trajectoryXn . Evidently, dynamics of the tagged
the tracer particle~TP!, will be quite complicated, in contras
to the standard, by definition, lattice random walk execu
by the vacancy: The TP can move only when encountered
the vacancy and its successive moves will be correla
since the vacancy will always have a greater probability
return for its next encounter from the direction it has left th
from a perpendicular or opposite direction. On the oth
hand, it is clear that on a two-dimensional~2D! lattice the TP
will make infinitely long excursions asn→` even in the
presence of a single vacancy, since its random walk is re
sive in 2D and the vacancy is certain to encounter the tra
particle many times. A natural question is, of course, w
are the statistical properties of the TP random walk, its me
square displacementXn

2 from its initial position at time mo-
ment n, and the probabilityPn

(tr )(X) that at timen the TP
appears at positionX5(x1 ,x2)?

The just described model, which represents, in fact, on
the simplest cases of the so-called ‘‘slaved diffusion p
cesses,’’ has been studied over the years in various gu
the ‘‘constrained dynamics’’ model of Palmer@1#; vacancy-
mediated bulk diffusion in metals and crystals~see, e.g.,
1063-651X/2002/66~3!/031101~15!/$20.00 66 0311
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@2–7#!; frictional properties of dynamical percolative env
ronments @8,9#; or dynamics of impure atoms in close
packed surface layers of metal crystals, such as, e.g., a
per @10–13#. Brummelhuis and Hilhorst@14# were the first to
present an exact solution of this model in the lattice form
lation. It has been shown that, in the presence of a sin
vacancy, the TP trajectories are remarkably confined;
mean-square displacement shows an unbounded growth
it grows only logarithmically with time,

Xn
2;

ln~n!

p~p21!
, as n→`, ~1!

which implies that the TP diffusivityDn , defined as

Dn5
Xn

2

4n
;

ln~n!

4p~p21!n
, ~2!

is not constant but rather vanishes as timen progresses.
Moreover, it has been found@14# that at sufficiently large

times,Pn
(tr )(X) converges to a limiting form as a function o

the scaling variableh5uXu/Aln(n). Still striking, this limit-
ing distribution is not aGaussianbut a modified Besse
function K0(h), which signifies that the successive steps
the TP, although separated by long time intervals, are ef
tively correlated. These results have been subsequently
produced by means of different analytical techniques in R
@15–17#.

Brummelhuis and Hilhorst have also generalized th
analytical approach to the case of a very small but fin
vacancy concentrationrv @18#, in which case a conventiona
diffusive-type behavior
©2002 The American Physical Society01-1
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Xn
25

rvn

~p21!
, rv!1, n→` ~3!

has been recovered. Note that Eq.~3! coincides with the
earlier result of Nakazato and Kitahara@2# in the limit rv
!1, and is well confirmed by numerical simulations@4,19#.

Note that Eqs.~1!–~3! also reveal, as we have alread
remarked, essential correlations in successive moves o
TP. To see this, one notices that in the absence of such
relations the TP diffusion coefficient can be estimated
D0;v/4, whereD0 refers to the TP uncorrelated rando
walk due to a single vacancy, 4 is the coordination numbe
the square lattice, whilev stands for the mean frequency
which the TP performs the moves. The latter is eviden
equal to the frequency at which the TP is visited by t
vacancy, i.e.,v5tn /n with tn being the mean number o
such visits during timen. Since the vacancy performs a sta
dard lattice random walk, one hastn; ln(n)/p ~see, e.g., Ref.
@5#! and, hence, discarding the correlations in succes
moves of the TP, we should findD0; ln(n)/4pn. On com-
paringD0 andDn in Eq. ~2!, we observe that both show th
samen-dependence but the prefactors are different, wh
means that correlations are marginally important—they
not change then dependence but renormalize the numeri
factors. It is customary to define the so-called correlat
factor f corr @4,14# as f corr5Dn /D0 as the property which, in
essence, embodies all nontrivial physics and represents
main challenge for the theoretical analysis of diffusion
interacting particles’ systems. For the model under study,
has thatf corr51/(p21)'0.467 . . .,1 and, hence, correla
tions induce a stronger confinement of the TP trajectories
to the enhanced probability of moves in the direction op
site to the direction of the preceding move. As a matter
fact, as shown in Ref.@14#, for the square lattice the ‘‘effec
tive’’ probability for the TP to step in the direction opposi
to its preceding move is 1/2, while the ‘‘effective’’ probabil
ties to step in a perpendicular direction or to step once m
in the same direction amount only to 0.1816 and 0.13
respectively. Note finally that the same type of argume
apply to the result in Eq.~3!. Here, discarding correlations
one expects thatD0;r/4 since the mean frequency of mov
~which equals the mean frequency of the TP encounters
the vacancies! is proportional to the vacancy concentratio
On comparing the latter estimate with the result in Eq.~3!,
one finds that they are related with exactly the same corr
tion factor.

This paper is devoted to the following, rather fundamen
in our opinion, problem: Suppose that we charge the tra
particle ~while the rest are kept neutral! and switch on an
electric fieldE. In such a situation, the TP will have asym
metric hopping probabilities and in its exchanges with
vacancy, depending on the TP and vacancy relative orie
tion, the TP will have a preference~or, on the contrary, a
reduction of the rate! for exchanging its position with the
vacancy compared to the other three neighboring partic
One might expect that in this case the TP mean displacem
X̄n will not be exactly equal to zero and might define the
mobility as
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mn5 lim
uEu→0

uXn̄u
uEun

. ~4!

Now, the question is whether or not the mobilitymn , calcu-
lated from the TP mean displacement in the presence o
external electric field, and the diffusivityDn , Eq. ~2!, de-
duced from the TP mean-square displacement in the abs
of the field, obey the generalized Einstein relation of t
form

mn5bDn , ~5!

whereb denotes the reciprocal temperature.
Note that this question has been already addressed w

the context of the TP diffusion in one-dimensional~1D!
hard-core lattice gases with arbitrary finite vacancy conc
tration @3,6,7,20,21#. It has been found that Eq.~5! holds not
only for the TP diffusion in a 1D hard-core gas on a fin
lattice @3#, but also for infinite 1D lattices with nonconserve
@7# and conserved particle numbers@6,20,21#. Remarkably,
in the latter case, Eq.~5! holds forn sufficiently large despite
the fact that both the TP mobility and the diffusivity are n
constant asn→` but all vanish in proportion to 1/An
@6,20,21#. As well, the validity of the Einstein relation ha
been corroborated for the charge carriers in semiconduc
@22# and for polymeric systems in the subdiffusive regim
@23,24#. On the other hand, it is well known that the Einste
relation is violated in some physical situations; for instan
it is not fulfilled for Sinai diffusion@25# or diffusion on per-
colation clusters, due to effects of strong temporal trapp
in the dangling ends, as well as for the Scher-Lax-Montr
model of anomalous random walk@26# ~see also Refs.@27#
and@28# for some other examples!. Hence, in principle, it is
not a priori clear whether or not Eq.~5! should be valid for
the model under study; here, the TP walk proceeds only
to encounters with asingle vacancy, its mean-square dis
placement grows onlylogarithmicallywith time, and the dif-
fusivity follows a much faster decay law in Eq.~2!, com-
pared to theDn;n21/2 law obtained for the one-dimensiona
systems with finite vacancy concentrations.

The paper is structured as follows: In Sec. II we presen
more precise formulation of the problem and introduce ba
notations. In Sec. III we discuss our general approach
computation of the probabilityPn

(tr )(X) of finding the TP at
positionX at time momentn, and to evaluatePn

(tr )(X) in the
general form as a function of some return probabilities
scribing the random walk executed by the vacancy. Sec
IV is devoted to the calculation of these return probabilit
in the general case, as well as to the derivation of expl
expressions determining their asymptotical behavior. In S
V we present explicit asymptotical results for both the pro
ability distribution and the TP mean displacement. We sh
that asn→`, Pn

(tr )(X), written in terms of two appropriate
scaling variables, converges to a rather unusual limiting d
tribution. We also demonstrate here that the TP mobil
which is obtained in the present work in the leadingn order,
and the TP diffusivity in the unbiased case, calculated ear
by Brummelhuis and Hilhorst@14#, do obey the Einstein re
1-2
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lation. Further on, in Sec. VI we extend an approximate
scription of the situation with very small but finite vacan
concentrationrv , proposed originally in Ref.@18#, over the
case when the TP is subject to an external electric field,
determine the TP mobility in the leadingn andrv order. We
also show that in this case the TP mobility and the TP dif
sivity in the unbiased case do obey the Einstein relation
the linearrv approximation and in the leadingn order. As
well, for this situation we find the limiting probability distri
bution of the TP position. Finally, in Sec. VII, we conclud
with a brief summary and discussion of our results.

II. THE MODEL

Consider a two-dimensional, infinite in bothx1 and x2
directions, square lattice, every site of which except one~a
vacancy! is filled by identical hard-core particles~see Fig. 1!.
All particles except one are electrically neutral. The charg
particle, which is initially at the origin, will be referred to i
what follows as the tracer particle, the TP. Its position at
lattice at timen will be denoted byXn . Electric fieldE of
strengthE5uEu is oriented in the positivex1 direction. For
simplicity, the charge of the TP is set equal to unity.

We suppose that every particle performs a random wal
discrete timen, constrained by the single-occupancy con
tion ~hard-core exclusion!. In consequence, only those neig
boring the vacancy particles can move. In order to spe
dynamics of the system, we will distinguish here betwe
‘‘individual’’ characteristics of the particle’s motion, an
‘‘collective’’ ones. By the term ‘‘individual’’ we presume
characteristics of isolated particles, while ‘‘collective’’ one
describe the resulting evolution of the entire system. We fi
describe the individual characteristics of particles’ dynam
We suppose that each neutral particle performs a symm
random walk between nearest-neighboring sites. Hence

FIG. 1. Two-dimensional, infinite in both directions, square l
tice in which all sites except one are filled with identical hard-co
particles~gray spheres!. The black sphere denotes a single trac
particle, which is subject to external fieldE, oriented in the positive
x1 direction, and thus has asymmetric hopping probabilities. T
arrows of different size depict schematically the hopping probab
ties; a larger arrow near the TP indicates that it has a preferenc
moving in the direction of the applied field.
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the neutral particles all jump directions are equally proba
and the jump direction probabilities are equal. The motion
the tracer particle is affected by the applied electric field su
that it ‘‘prefers’’ to jump along its direction. The normalize
jump direction probabilities of the~isolated! TP are given, in
the usual fashion, by

pn5Z21expFb2 ~E"en!G , ~6!

whereZ is the normalization constant,en is the unit vector
denoting the jump direction,nP$61,62%, and (E"en)
stands for the scalar product. We adopt the notationse61
5(61,0) ande625(0,61), which means thate1 (e21) is
the unit vector in the positive~negative! x1 direction, while
e2 (eÀ2) is the unit vector in the positive~negative! x2 di-
rection. Consequently, the normalization constantZ is

Z5(
m

expFb2 ~E"em!G , ~7!

where the sum with the subscriptm denotes summation ove
all possible orientations of the vectorem , that is,m5$61,
62%. Note that the jump direction probabilities defined b
Eqs. ~6! and ~7! do preserve the standard detailed balan
condition of the form

pnexpF2
b

2
~E"en!G5p2nexpFb2 ~E"en!G . ~8!

Turning next to the evolution of the entire system, we fi
note that the choice of the ‘‘collective’’ transition probabil
ties qn is rather nontrivial. Similarly to the situation de
scribed in Ref.@29#, which concerned a biased dynamics
the TP in a two-dimensional lattice gas, one expects a n
homogeneous particles’ density distribution around the
This implies that, in particular, simple detailed balance re
tion in Eq. ~8! is invalid and the ‘‘true’’ detailed balance
condition would also involve average particles’ densities
the sitesn and2n.

As we have already remarked, hard-core exclusion h
ders the hopping motion of all particles, except for fo
nearest-neighbors of the vacancy. That is, for only four p
ticles adjacent to the vacancy an attempt to jump might
successful. Then, the most natural choice coherent with
individual dynamic rules is to assume that at each time s

~i! if the TP is not adjacent to the vacancy, one partic
chosen with probability 1/4 among four nearest-neighbors
the vacancy, exchanges its position with the vacancy; an

~ii ! if the TP is at the siteXn and the vacancy occupies a
adjacent siteXn1en , then the TP exchanges its position wi
the vacancy with probability

q2n5Zn* pn , ~9!

i.e., q2n is proportional to the probabilitypn of an isolated
particle, Eq.~6!, which mirrors its preference for jumps i
the direction of the applied field, while the probability of th
exchange of positions with any of the other three adjac
neutral particles is given by

-

r

e
i-
for
1-3
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qmÞ2n5
1

4
Zn* . ~10!

The normalization factorZn* , dependent on the initial po
sition n, is chosen next from the condition that the vacan
performs one jump each time step as it is prescribed in
original model of Brummelhuis and Hilhorst. Such a con
tion yields

Zn* 5~3/41pn!21. ~11!

Also note that without imposing such a condition we wou
introduce artificial ‘‘temporal trapping’’ probability, which
would definitely lead to a violation of Eq.~5!.

Such a choice of the dynamic rules completely defines
time evolution of the system. Note that, apart from four si
in the immediate vicinity of the tracer particle, the vacan
performs a standard, symmetric random walk. In the vicin
of the TP, the vacancy jump direction probabilities are p
turbed by the TP asymmetric hopping rules. Hence, the
dom walk executed by the vacancy can be thought of a
particular case of the so-called ‘‘random walk with defecti
sites’’ ~see Ref.@5# for more details!, or as a realization of the
‘‘random walk with a hop-over site’’@17#.

III. PROBABILITY DISTRIBUTION FUNCTION Pn
„tr …

„X…

A standard approach to define the properties of the
random walk would be to start with a master equation de
mining the evolution of the whole configuration of particle
In doing so, similarly to the analysis of the tracer diffusio
on 2D lattices in the presence of a finite vacancy concen
tion ~see, e.g., Ref.@29#!, one obtains the evolution of th
joint distribution Pn(X,Y) of the TP positionX and of the
vacancy positionY at time momentn. The property of inter-
est, i.e., the reduced distribution function of the TP alo
will then be found fromPn(X,Y) by performing lattice sum-
mation over all possible values of the variableY.

Here we pursue, however, a different approach, which
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been first put forward in the original work of Brummelhu
and Hilhorst@14#, that is, we construct the distribution func
tion of the TP position at timen directly in terms of the
return probabilities of the random walk performed by t
vacancy. The only complication, compared to the unbia
case considered by Brummelhuis and Hilhorst@14#, is that in
our case ten different return probabilities would be involve
instead of three different ones appearing in the unbia
case. Hence, the analysis will be slightly more involved.

We begin by introducing some basic notations.
~i! Let Pn

(tr )(X) be the probability that the TP, which star
its random walk at the origin, appears at the siteX at time
momentn, given that the vacancy is initially at siteY0.

~ii ! Let Fn* (0uY0) be the probability that the vacancy
which starts its random walk at the siteY0, arrives at the
origin 0 for the first time at the time stepn.

~iii ! Let Fn* (0uenuY0) be the conditional probability tha
the vacancy, which starts its random walk at the siteY0,
appears at the origin for the first time at the time stepn,
being at time momentn21 at the siteen .

Further on, for any time-dependent quantityLn we define
the generating function of the form

L~j!5 (
n50

1`

Lnjn, ~12!

and for any space-dependent quantityY(X) the discrete Fou-
rier transform

Ỹ~k!5(
X

exp~ i ~k•X!!Y~X!, ~13!

where the sum runs over all lattice sites.
Now, following Brummelhuis and Hilhorst@14#, we write

down directly the equation obeyed by the reduced proba
ity distribution Pn

(tr )(X) ~cf. Ref. @16# for a study of the joint
probability of the TP position and of the vacancy position
the unbiased case!:
Pn
(tr )~X!5dX,0S 12(

j 50

n

F j* ~0uY0!D 1 (
p51

1`

(
m151

1`

••• (
mp51

1`

(
mp1150

1`

dm11•••1mp11 ,n(
n1

•••(
np

den1
1•••1enp

,X

3S 12 (
j 50

mp11

F j* ~0u2enp
!DFmp

* ~0uenp
u2enp21!•••Fm2

* ~0uen2
u2en1

!Fm1
* ~0uen1

uY0!. ~14!

Next, using the definition of the generating functions and of the discrete Fourier transforms, Eqs.~12! and~13!, we obtain the
following matricial representation of the generating function of the TP probability distribution:

P̃(tr )~k;j!5
1

12j S 11D 21~k;j!(
m

Um~k;j!F* ~0uemuY0 ;j! D . ~15!

In Eq. ~15! the functionD(k;j) stands for the determinant of the following 434 matrix:

D~k;j![det@ I2T~k;j!#, ~16!

where the matrixT(k;j) has the elements (T(k;j))n,m defined by
1-4
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~T~k;j!!n,m5exp~ i ~k•en!!An,2m~j!. ~17!

Explicitly, the matrixT(k;j) is given by

T~k;j![S eik1A1,21~j! eik1A1,1~j! eik1A1,22~j! eik1A1,2~j!

e2 ik1A21,21~j! e2 ik1A21,1~j! e2 ik1A21,22~j! e2 ik1A21,2~j!

eik2A2,21~j! eik2A2,1~j! eik2A2,22~j! eik2A2,2~j!

e2 ik2A22,21~j! e2 ik2A22,1~j! e2 ik2A22,22~j! e2 ik2A22,2~j!

D , ~18!
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where the coefficientsAn,m(j), n,m561,62, stand for

An,m~j![F* ~0uenuem ;j!5 (
n50

1`

Fn* ~0uenuem!jn, ~19!

i.e., are the generating functions of the conditional probab
ties for the first time visit of the origin by the vacancy, co
ditioned by constraint of the passage through a specified
on the previous step. Note that, by symmetry,

A2,n~j!5A22,n~j!,

An,2~j!5An,22~j! ~20!

for n561, and

A2,2~j!5A22,22~j!,

A2,22~j!5A22,2~j!. ~21!

As a result of such a symmetry, we have to consider just
independent functionsAm,n(j) ~note that in the unbiase
case one has to deal with only three such functions@14#!.
Explicit expression of the determinant in Eq.~16! in terms of
these generating functions is presented in the Appen
Lastly, the matrixUm(k;j) in Eq. ~15! is given by

Um~k;j![D~k;j!(
n

~12e2 i (k•en)!@ I 2T~k;j!#n,m
21 ei (k•em).

~22!

The property of interest, the TP probability distribution fun
tion, will then be obtained by invertingP̃(tr )(k;j) with re-
spect to the wave vectork and to the variablej:

Pn
(tr )~X!5

1

2ip R
C

dj

jn11

1

~2p!2E2p

p

dk1E
2p

p

dk2

3ei (k•X)P̃(tr )~k;j!, ~23!

where the contour of integrationC encircles the origin coun
terclockwise.

Finally, we remark that as far as we are interested in
leading large-n behavior of the probability distribution
Pn

(tr )(X) only, here we may constrain ourselves to the stu
of the asymptotic behavior of the generating functi
P̃(tr )(k;j) in the vicinity of its singular point nearest t
03110
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j50. We notice that, similarly to the unbiased case, t
point isj51 whenk50. As a matter of fact, such a behavio
stems from thea priori nonevident fact that the vacanc
starting from a given neighboring site to the origin, is certa
to eventually reach the origin. This will be demonstrat
explicitly in Sec. IV @cf. Eq. ~48!#. As a matter of fact, one
can see from Eq.~48! and the explicit representation o
D(0;j) presented in the appendix thatD(0;j51)[0. In
consequence, expansion in powers of a small deviation
2j) has to be accompanied by a small-k expansion, exactly
as it has been performed in Ref.@14#.

IV. THE RETURN PROBABILITIES F N* „0zemzen…

As we have already remarked, the vacancy random w
between two successive visits of the lattice site occupied
the TP can be viewed as a standard, two-dimensional, s
metric random walk with some boundary conditions impos
on the four sites adjacent to the site occupied by the TP
order to compute the return probabilitiesFn* (0uemuen) for
such a random walk, we add, in the usual fashion@5,30#, an
additional constraint that the site at the lattice origin is in
absorbing state. Then, the vacancy random walk can be
mally represented as a lattice random walk with si
dependent probabilities of the formp1(sus8)51/41q(sus8),
where s8 is the site occupied by the vacancy at the tim
momentn, while s denotes the target, nearest-neighboring
s8 site,

q~sus8![5
0 if s8¹$0,e61 ,e62%,

ds,021/4 if s850,

dqn if s85en and s50,

2dqn/3 if s85en and s8Þ0,

~24!

wheredqn is defined, according to Eqs.~9!–~11!, by

dqn[
pn

pn13/4
2

1

4
. ~25!

Further on, we definePn
1(sus0) as the probability distribution

associated with such a random walk starting at sites0 at step
n50.

Now, let the symbolsE, A, and B define the following
three events.
1-5
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~1! The eventE: the vacancy, which has started its rando
walk at the siteen , visits the origin0 for the first time at the
nth step exactly, being at the siteem at the preceding step
n21.

~2! The eventA: the vacancy, which started its rando
walk at the siteen , is at the siteem at the time momentn
21 and the origin0 has not been visited during then21
first steps of its walk.

~3! The eventB: the vacancy jumps from the neighborin
to the origin siteem to the site0 at thenth step exactly.

Evidently, by definition, the desired first visit probabilit
Fn* (0uemuen) is just the probability of theE event

Fn* ~0uemuen!5Prob~E!. ~26!

To calculate Prob(E) we first note that the probabilities o
three such events obey

Prob~E!5Prob~AùB!5Prob~A!Prob~B!. ~27!

On the other hand, we have that

Prob~A!5Pn21
1 ~emuen! ~28!

and

Prob~B!5
pm

3/41pm
. ~29!

Hence, by virtue of Eqs.~26!–~29!, the return probability
Fn* (0uemuen) is given explicitly by

F* ~0uemuen ;j!5jS pm

3/41pm
D P1~emuen ;j!. ~30!

Therefore, calculation of the return probabilitiesFn* (0uemuen)
amounts to the evaluation of the probability distributi
Pn

1(sus0) of the vacancy random walk in the presence of
absorbing site placed at the lattice origin. Such a probab
distribution will be determined in the next section.

A. The generating function of the probability distribution
P¿

„szs0…

Making use of the generating function technique adap
to random walks on lattices with defective sites@5# and@31#,
we obtain

P1~siusj ;j!5P~siusj ;j!1 (
l 522

2

A~siusl ;j!P1~slusj ;j!,

~31!

where

si[H ei , for i P$61,62%,

0, for i 50,
~32!

and
03110
n
y

d

A~siusl ;j![j(
s8

P~sius8;j!q~s8usl!, ~33!

P(siusj ;j) being the generating function of the unperturb
associated random walk~that is, symmetric random walk
with no defective sites!.

Further on, Eq.~31! can be recast into the following ma
tricial form:

P15~12A!21P, ~34!

in which equationP, P1, A stand for the 535 matrices with
the elements defined by

Pi , j5P~siusj ;j!, Pi , j
1 5P1~siusj ;j!, A i , j5A~siusj ;j!,

~35!

where i , j 50,11,21,12,22. Next, using an evident rela
tion @5#

P~skusl ;j!5dk,l1
j

4 (
n

P~skusl1en ;j!, ~36!

and the symmetry properties of a standard random walk,
can readily show that:

~i! for slÞs0 andskÞs0 ,

A~skusl ;j!5
4

3
dql~P~0u0;j!212P~skusl ;j!1d l ,k!;

~37!

~ii ! for slÞs0 andsk5s0 ,

A~s0usl ;j!5
4

3
jdqlS P~0u0;j!2

1

j2
@P~0u0;j!21# D ;

~38!

~iii ! for sl5s0 ,

A~skus0 ;j!5dk,02~12j!P~sku0;j!. ~39!

Consequently, the matricesA andP in Eq. ~34! are given
by

A5S a dq1f dq21f dq2f dq2f

b 0 dq21e dq2c dq2c

b dq1e 0 dq2c dq2c

b dq1c dq21c 0 dq2e

b dq1c dq21c dq2e 0

D , ~40!
1-6



ULTRASLOW VACANCY-MEDIATED TRACER . . . PHYSICAL REVIEW E 66, 031101 ~2002!
where

a[12~12j!G~j!,

b[
12j

j
@12G~j!#,

e[
4

3
@2g~j!21#,
he

o

n

e

03110
c[
4

3 F211
2

j2
12G~j!S 12

1

j2D 2g~j!G ,

f [
4

3
jS G~j!2

G~j!21

j2 D , ~41!

and
P5S G~j! @G~j!21#/j @G~j!21#/j @G~j!21#/j @G~j!21#/j

@G~j!21#/j G~j! G~j!22g~j! t~j! t~j!

@G~j!21#/j G~j!22g~j! G~j! t~j! t~j!

@G~j!21#/j t~j! t~j! G~j! G~j!22g~j!

@G~j!21#/j t~j! t~j! G~j!22g~j! G~j!

D , ~42!
l

ting

m

ge
ec-

the
ed
with

G~j![P~0u0;j!, g~j![2
1

2
@P~e1uÀe1 ;j!2P~0u0;j!#,

t~j![S 2

j2
21D G~j!2

2

j2
1g~j!. ~43!

Note that Eqs.~40! and ~42! now define theP1 matrix ex-
plicitly, and hence, define the generating function of t
probability distributionP1(sus0).

B. Asymptotic behavior of the generating functions of the
return probabilities in the vicinity of jÄ1

As we have already remarked, here we constrain our c
sideration to the analysis of the leading inn behavior; this
amounts to consideration of the leading in the limitj→12

behavior of the corresponding generating functions. Expa
ing G(j) and g(j) in the vicinity of the singular pointj
51 ~cf. Refs.@5# and @14,32,33#!, we have

G~j!5
1

p
ln

8

12j
2

1

2p
~12j!ln~12j!1O~12j!,

j→12 ~44!

and

g~j!5S 22
4

p D1
2

p
~12j!ln~12j!1O@~12j!#,

j→12. ~45!

Consequently, we find by solving the matricial equation~34!
that the generating functions of the return probabilities ob
n-

d-

y

An,m~j!5
An,m

(1) ~u!

S~u!
2

An,m
(2) ~u!

S2~u!
~ ln~12j!!211O~12j!,

~46!

whereu[exp(bE/2), An,m
(1) (u) andAn,m

(2) (u) are some rationa
fractions~all listed explicitly in the Appendix!, while

S~u![$~p22!u61~2p226p112!u5

1~8p2225p134!u42~4p2260p188!u3

1~8p2225p134!u21~2p226p112!u1p22%.

~47!

It follows from Eq.~46! and explicit expressions forAn,m(j)
presented in the Appendix that, in particular, the genera
functions of the return probabilities fulfill

A1,21~12!1A21,21~12!12A2,21~12!51,

A1,1~12!1A21,1~12!12A2,1~12!51,

A1,2~12!1A21,2~12!1A22,2~12!1A2,2~12!51, ~48!

which relations imply that the vacancy, starting its rando
walk from a given, neighboring the origin site, iscertain to
return eventually to the origin.

V. THE TP MEAN DISPLACEMENT AND THE
PROBABILITY DISTRIBUTION

In this section we proceed as follows: Taking advanta
of the asymptotical expansion obtained in the previous s
tion, we first determine the small (12j) behavior of the
generating functionP̃(tr )(k;j), accompanied by the small-k
expansion. Next, we evaluate the generating function of
TP mean displacement by differentiating the obtain
1-7
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asymptotical expression forP̃(tr )(k;j) with respect to the
components of the wave vector and analyze its large-n be-
havior. Lastly, we invert the asymptotical expansion of t
generating functionP̃(tr )(k;j) and obtain the correspondin
probability distributionPn

(tr )(X) in a certain scaling limit.

A. Asymptotic expansion of the generating functionP̃„tr …
„k; j…

Using the explicit representation of the determina
D(k;j) in Eq. ~16! in terms of the generating functions o
the return probabilitiesAn,m(j) presented in the Appendix
as well as the asymptotical expansions in Eq.~46!, we find
that in the vicinity ofj51 and for small values of the wav
vectork, D(k;j) is given by

D~k;j!5 iF1~u!k11F2~u!k1
21F3~u!k2

2

2F4~u!ln21~12j!1•••, ~49!
-

03110
t

where we have used the shortenings

F1~u![2
~p22!~u21!~11u!5@u212~2p23!u11#

@u212~p21!u11#S~u!
,

~50!

F2~u![
~p22!~11u!4~u211!@u212~2p23!u11#

2@u212~p21!u11#S~u!
,

~51!

F3~u![
u~p22!~11u!4@~2p23!u212u12p23#

@u212~p21!u11#S~u!
,

~52!

and
F4~u![
p~p22!~11u!4@~2p23!u212u12p23#@u212~2p23!u11#

@u212~p21!u11#S~u!
, ~53!
ctly
an

ht-
e
e
vi-

-

and assumed, for simplicity, that the starting pointY0 of the
vacancy random walk isY05e21 . On the other hand, we
find that

(
n

Un~k;j!F* ~0uenu2e1 ;j!52 iF1~u!k12F2~u!k1
2

2F3~u!k2
21•••. ~54!

Consequently, in the small-k limit and j→12, the generating
function P̃(tr )(k;j) obeys

P̃(tr )~k;j!5
1

12j H 12S 2 ia0k11
1

2
a1k1

21
1

2
a2k2

2D
3 ln~12j!J 21

, ~55!

where the coefficients

a0~E![p21sinh~bE/2!@~2p23!cosh~bE/2!11#21,

a1~E![p21cosh~bE/2!@~2p23!cosh~bE/2!11#21,
~56!

a2~E![p21@cosh~bE/2!12p23#21

are all functions of the field strengthE and of the tempera
ture only.
B. The TP mean displacement for arbitrary field strength E

As a matter of fact, the leading large-n asymptotical be-
havior of the TP mean displacement can be obtained dire
from Eq. ~55! since the generating function of the TP me
displacement, i.e.,

X̄~j![ (
n50

1`

X̄njn ~57!

obeys~see, e.g., Ref.@4#!

X̄~j!52 i S ] P̃(tr )

]k1
~0;j!e11

] P̃(tr )

]k2
~0;j!e2D . ~58!

Consequently, differentiating the expression on the rig
hand side of Eq.~55! with respect to the components of th
wave vectork, we find that the asymptotical behavior of th
generating function of the TP mean displacement in the
cinity of j512 follows

X̄~j!;S a0~E!

12j
ln

1

12j De1 . ~59!

Further on, using the discrete Tauberian theorem~cf. Ref.
@5#! and Eq. ~56!, we find the following general force
velocity relation for the system under study,
1-8
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X̄n;~a0~E!ln n!e1

5S 1

p

sinh~bE/2!

~2p23!cosh~bE/2!11
ln nD e1 , as n→`,

~60!

which shows that the TP mean displacement gro
logarithmically with n. Consequently, one may claim th
the typical displacement along thex1 direction scales as ln(n)
asn→`. On the other hand, typical displacement in thex2

direction is expected to grow only in proportion toAln(n), as
in the unbiased case@14#. These claims will be confirmed in
what follows by the form of the scaling variables involved
the limiting distribution.

Consider next the behavior of the coefficienta0(E) in the
limit E→0. Here, we find from Eq.~56! that

a0~E!5
bE

4p~p21!
1O~E3!, ~61!

and hence, the mobilitymn , defined in Eq.~4!, follows

mn;
b

4p~p21!

ln~n!

n
, as n→`. ~62!

Comparing next the result in Eq.~62! with that for the dif-
fusivity Dn , Eq. ~2!, derived by Brummelhuis and Hilhors
@14# in the unbiased case, we infer that the TP mobility a
diffusivity do obey, at least in the leadingn order, the gen-
eralized Einstein relation of the formmn5bDn @3#. Note that
this cannot be, of course, ana priori expected result, in view
of an intricate nature of the random walks involved a
anomalous,logarithmic confinement of the random wal
trajectories.

C. Probability distribution Pn
„tr …

„X…

We turn next to calculation of the asymptotic forms of t
probability distributionPn

(tr )(X). Inverting P̃(tr )(k;j) with
respect tok, we notice first that in the limitj→12 the inte-
grand is sharply peaked aroundk50, such that the bulk
contribution to the integral comes from the valuesk150 and
k250; this implies that we can extend the limits of integr
tion from 6p to 6`, which yields in the limitj→12:

P(tr )~X;j!;
1

~12j!~2p!2 E
2`

1`E
2`

1`

dk1dk2

3exp~2 ik1x12 ik2x2!

3H 12S 2 ia0~E!k11
1

2
a1~E!k1

2

1
1

2
a2~E!k2

2D ln~12j!J 21

. ~63!

Further on, using the integral equality
03110
s

d

H 12S 2 ia0~E!k11
1

2
a1~E!k1

21
1

2
a2~E!k2

2D ln~12j!J 21

5E
0

1`

dv expF2vH 12S 2 ia0~E!k11
1

2
a1~E!k1

2

1
1

2
a2~E!k2

2D ln~12j!J G , ~64!

we cast the integral in Eq.~63! into the form

P(tr )~X;j!;
1

~12j!~2p!2E0

1`

dv exp~2v !

3E
2`

1`

dk1E
2`

1`

dk2exp~2 ik2x2!

3expS v
2

~a1~E!k1
21a2~E!k2

2!ln~12j!

2 ik1@x11va0~E!ln~12j!# D . ~65!

Note now that in order to evaluate explicitly the Gauss
integral in Eq. ~65!, we have to consider separately tw
cases: when~a! the external field in infinitely strong,E5`
~which impliesa250), such that the TP performs a total
directed walk, and~b! whenE is bounded,E,` ~and hence,
a2.0).

1. Directed walk, EÄ`

We start with the simplest case when the TP perform
totally directed walk under the influence of an infinite
strong field. In this case, the probability distribution is d
fined for non-negativex1 values only, and Eq.~65! reduces
to

P(tr )~X;j!;
d~x2!u~x1!

2p~12j!
E

0

1`

dv exp~2v !

3E
2`

1`

dk1expS v
2

a1~E!k1
2ln~12j!

2 ik1@x11va0~E!ln~12j!# D , ~66!

whereu(x1) denotes the Heaviside theta function. Perfor
ing the integrals, we find that, in the limitj→12, the gen-
erating functionP(tr )(X;j) obeys

P(tr )~X;j!;2d~x2!u~x1!

3
p~2p23!

~12j!ln~12j!
expS p~2p23!

ln~12j!
x1D .

~67!

Applying next the discrete Tauberian theorem@5,34#, we
find, eventually,
1-9
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Pn
(tr )~X!;d~x2!u~x1!

p~2p23!

ln~n!
expS 2

p~2p23!

ln~n!
x1D ,

~68!

which means that in the totally directed case, in the largn
and large-x1 limit, the scaled variable h`[p(2p
23)x1 /ln(n) is asymptotically distributed according to

P~h`!5u~h`!exp~2h`!, ~69!

i.e., has an exponential scaling function.

2. Arbitrary bounded field EË`

In this case the coefficienta2.0 and the probability dis-
tribution is defined also for negative values ofx1; as well,
P(tr )(X;j) is defined also for nonzero values ofx2. In this
general case, we find, performing integrations over the c
ponents of the wave vector, thatP(tr )(X;j) attains, asj
→12, the following form:

P(tr )~X;j!;2~2p~12j!ln~12j!Aa1~E!a2~E!!21

3E
0

1`

dv exp~2v !expH 1

2v ln~12j!

3F S x1

a1~E!
1v

a0~E!

a1~E!
ln~12j! D 2

1S x2

a2~E! D
2G J . ~70!

The integral in the latter equation can be calculated exa
which yields

P(tr )~X;j!;2~p~12j!ln~12j!Aa1~E!a2~E!!21

3expS a0~E!

a1~E!
x1DK0FhES 1

12j D G , ~71!

where K0 is the modified Bessel~McDonald! function of
zeroth order, and

hE~l![A 2

ln~l!
1

a0
2~E!

a1~E!
A x1

2

a1~E!
1

x2
2

a2~E!
. ~72!
:

nd

03110
-

y,

Finally, using the discrete Tauberian theorem@5,34#, we find
from Eq.~72! that in the large-n and large-X limits, the prob-
ability distributionPn

(tr )(X) obeys

Pn
(tr )~X!;~pAa1~E!a2~E!ln~n!!21

3expS a0~E!

a1~E!
x1DK0@hE~n!#. ~73!

Note that in the unbiased case, i.e., whenE50, the probabil-
ity distribution Pn

(tr )(X) defined by Eqs.~72! and ~73! re-
duces to the form predicted earlier by Brummelhuis and H
horst @14#.

3. Limiting probability distribution function

Now, we recollect that the scaling behavior expected
x1; ln(n) ~for E.0)andx2;Aln(n). In order to obtain from
Eqs. ~72! and ~73! the limiting probability distribution, we
introduce two scaling variables:

h1[x1 /a0~E!ln~n!,

h2[x2 /A2a2~E!ln~n!. ~74!

Note thath1 becomesh` in the special caseE5`. In terms
of these scaling variableshE(n) in Eq. ~72! takes the form

hE~n!5
a0

2~E!

a1~E!
ln~n!uh1u H 11

a1~E!

a0
2~E!ln~n!

F11S h2

h1
D 2G

1O@1/ln2~n!#J . ~75!

Note now that for arbitrary fixedh1 andh2, the argument of
the Bessel functionhE(n) written in terms of the scaling
variables tends to infinity asn→`. Consequently, using the
limiting behavior of the modified Bessel function

K0~y!5S p

2yD 1/2

exp~2y!@11O~1/y!#, ~76!

we find that the probability distributionPn
(tr )(X), written in

terms of the scaling variables, converges asn→` to the
limiting form
Pn
(tr )~X!;n→`H @2pa2~E!a0

2~E!h1ln3~n!#21/2exp~2h12h2
2/h1! for h1>0,

0, for h1,0,
~77!
ce-
mp-
ark
or, equivalently, that the scaling variablesh1 andh2 have the
following, rather unusual limiting joint distribution function

P~h1 ,h2!5
u~h1!

Aph1

expS 2h12
h2

2

h1
D . ~78!

We note that this distribution is properly normalized a
yields, of course, the same result for the TP mean displa
ment as the approach based on differentiation of the asy
totical expansion of the generating function. We also rem
that the reduced distributionsP(h1)5*dh2P(h1 ,h2) and
P(h2)5*dh1P(h1 ,h2) take the form

P~h1!5u~h1!exp~2h1!,
1-10
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P~h2!5exp~22uh2u!, ~79!

and hence the reduced distributionP(h1) appears to be ex
actly the same as in the caseE5`.

VI. FINITE VACANCY CONCENTRATION

In this last section we turn to the situation when vacanc
are present at a very small, but finite concentrationrv . We
base our analysis on the model and approximate analy
approach proposed by Brummelhuis and Hilhorst in R
@18#, generalizing it over the case when the TP experienc
bias due to external electric field. In their approach, Bru
melhuis and Hilhorst decoupled the joint probability dist
bution of the TP and vacancies into the product of pair d
tribution functions. This approximation is appropriate wh
rv!1 and yields meaningful results for the TP mean squ
displacement in which the prefactor is evaluated only to
leading order in the concentration of vacancies. As a ma
of fact, such an approximation is tantamount to the so-ca
Smoluchowski approach, well-known in the literature on t
evolution of the reaction-diffusion systems~see, e.g., Ref.
@35# and references therein!. Making use of their approach
and the results of previous sections concerning the form
the pair distribution functions in the biased case, we de
mine the TP mean displacement in the presence of an e
nal electric field. This mean displacement is shown to gr
linearly with time, and we calculate the prefactor in this d
pendence in the linear withrv approximation. We verify the
validity of the Einstein relation for this model and als
present an estimate of the limiting probability distribution

The model of Ref.@18# is defined as follows. Consider
finite lattice of sizeL3L with periodic boundary conditions
containingM vacancies. The mean concentration of the
cancies is thusrv5M /L2, and is supposed to be very sma
rv!1. The TP is initially located at the origin and initia
positions of the vacancies are denoted
Y0

(1) ,Y0
(2) , . . . ,Y0

(M ) , which all are different from each othe
and from0. All other sites are filled with neutral hard-cor
particles. Note that additionally to the definition of the mod
in Ref. @18# we also suppose the TP is charged and is sub
to external electric fieldE, which is oriented in the positive
x1 direction.

Further on, the particles’ dynamics in Ref.@18# is defined
in the following way. Similar to the single vacancy cas
Brummelhuis and Hilhorst stipulate that at each time step
vacancies exchange their positions with either of the ne
boring particles, such that each vacancy makes a step
time step. Note that when many vacancies are present, it
of course appear that two or more vacancies occupy adja
sites or have common neighboring particles, in which c
their random walks will interfere. This requires, in turn, de
nition of complementary dynamic rules describing evoluti
of configurations with vacancies appearing at adjacent s
Such a definition is of course possible, but is not, howev
necessary, since in view of the decoupling approximat
underlying the model solution only consideration of the p
distribution functions is required. As also noticed in R
@18#, the situations in which two vacancies appear at
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adjacent sites or have common neighbors contribute onl
O(rv

2) and thus go beyond their approximation. Cons
quently, such details can be safely neglected when one
cuses on the linearrv approximation only.

Now, we briefly outline the basic steps involved in th
approach by Brummelhuis and Hilhorst@18#. Let
P n

(tr )(XuY0
(1) ,Y0

(2) , . . . ,Y0
(M )) denote the probability of find-

ing at time momentn the TP at positionX as a result of its
interaction with allM vacancies. This probability can be rep
resented as

P n
(tr )~XuY0

(1) ,Y0
(2) , . . . ,Y0

(M )!

5(
X0

(1)
••• (

X0
(M )

dX,X
0
(1)1•••1X

0
(M )P n

(tr )

3~X0
(1) ,X0

(2) ,•••,X0
(M )uY0

(1) ,Y0
(2) ,•••,Y0

(M )!,

~80!

where P n
(tr )(X0

(1) ,X0
(2) , . . . ,X0

(M )uY0
(1) ,Y0

(2) , . . . ,Y0
(M ))

stands for the conditional probability that within the tim
interval n the TP has displaced to the positionX0

(1) due to
interactions with the first vacancy, to the positionX0

(2) due to
the interactions with the second vacancy and etc.

Next, the main assumption of Ref.@18# is that all the
vacancies contribute independently to the TP displacem
That is, events in which two or more vacancies appear sim
taneously at the sites adjacent to the TP are simply be
discarded. Under such an assumption, the conditional p
ability P n

(tr )(X0
(1) ,X0

(2) , . . . ,X0
(M )uY0

(1) ,Y0
(2) , . . . ,Y0

(M )) can
be approximated as a product of two-particle distributi
functions

P n
(tr )~X0

(1) ,X0
(2) , . . . ,X0

(M )uY0
(1) ,Y0

(2) , . . . ,Y0
(M )!

')
j 51

M

Pn
(tr )~X0

( j )uY0
( j )!, ~81!

wherePn
(tr )(X0

( j )uY0
( j )) denotes the probability of finding th

TP at the siteX0
( j ) at time momentn due to interactions with

a vacancy initially atY0
( j ) in a system with asinglevacancy.

As we have already remarked, the situations in which two
more vacancies appear at the adjacent sites or have com
neighbors contribute only toO(rv

2). Consequently, the ap
proximation in Eq.~81! would yield correct results to the
orderO(rv), and is quite reasonable whenrv!1.

Further on, combining Eqs.~80! and ~81!, and averaging
P n

(tr )(XuY0
(1) ,Y0

(2) , . . . ,Y0
(M )) over initial vacancy configu-

rations, one has@18#

^P n
(tr )~XuY0

(1) ,Y0
(2) , . . . ,Y0

(M )!&

'(
X0

(1)
••• (

X0
(M )

dX,X
0
(1)1•••1X

0
(M ))

j 51

M

^Pn
(tr )~X0

( j )uY0
( j )!&.

~82!
1-11
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Now, defining the Fourier transformed averaged distrib
tions as

P̃n
(tr )~k,M ,L !5(

X
exp@ i ~k•X!#

3^P n
(tr )~XuY0

(1) ,Y0
(2) , . . . ,Y0

(M )!& ~83!

and

P̃n
(tr )~k!5(

X
exp@ i ~k•X!#^Pn

(tr )~XuY0
(1)!&, ~84!

and performing the corresponding summations, one fi
that

P̃n
(tr )~k,M ,L !'~ P̃n

(tr )~k!!M. ~85!

Turning next to the limitL,M→` ~while the ratioM /L2

5rv is kept fixed!, we obtain

P̃n
(tr )~k,rv!5 lim

L,M→`

P̃n
(tr )~k,M ,L !'exp~2rvVn~k!!,

~86!

where

Vn~k![(
j 50

n

(
n

Dn2 j~kuen! (
YÞ0

F j* ~0uenuY!, ~87!

Dn~kuen!512 P̃n
(tr )~kuÀen!exp@ i ~k•en!#, ~88!

F j* (0uenuY) are conditional return probabilities, defined

Sec. III, andP̃n
(tr )(kuÀen) is the Fourier transformed single

vacancy probability distributionPn
(tr )(XuÀen). The latter can

be readily obtained by applying the discrete Fourier trans
mation to the relation

Pn
(tr )~XuY!5dX,0S 12(

j 50

n

F j* ~0uY!D
1(

j 50

n

(
n

Pn2 j
(tr ) ~XÀenuÀen!F j* ~0uenuY!

~89!

and choosingY5Àen .
Note now that the presented derivation is quite gene

and valid for the arbitrary choice ofpn (qn). We focus now
on the case under study, i.e., when the TP experienc
constant bias due to external electric field, and stipulate
qn obeys Eqs.~6!–~10!. For such a choice ofqn we find that
the generating function ofVn(k) is given by

V~k;j!5(
n

D~kuen ;j! (
YÞ0

F* ~0uenuY;j!. ~90!

Further on, turning to the asymptotical limitj→12, k→0
and making use of the results of the previous sections,
have thatD(kuen ;j) follows
03110
-

s

r-

al

a
at

e

D~kuen ;j![
1

12j H 12exp@ i ~k•en!#

3F12 ln~12j!S 2 ia0~E!k11
1

2
a1~E!k1

2

1
1

2
a2~E!k2

2D G21J 1•••. ~91!

Consider next the form of(YÞ0F* (0uenuY;j) in the limit
j→12, k→0. This sum can be evaluated rather straightf
wardly by taking advantage of the results of Sec. III. W
have then

(
YÞ0

F* ~0uenuY;j!5jS pn

3/41pn
D (

YÞ0
P1~enuY;j!

5jS pn

3/41pn
DB n

t ~12A!21(
YÞ0

B~Y;j!,

~92!

whereBn is the nth basis vector,B n
t denotes the transpos

tion of Bn , and B(Y;j) is the vector, whose elements a
@P(siuY;j)# i , i 50,1,21,2,22. Explicitly, the basis vectors
are given by

B0[S 1

0

0

0

0

D , B1[S 0

1

0

0

0

D , B21[S 0

0

1

0

0

D ,

B2[S 0

0

0

1

0

D , B22[S 0

0

0

0

1

D . ~93!

Further on, using an evident symmetry relation

P~si uY i ;j!5P~Y i usi ;j!, ~94!

as well as the relation in Eq.~36!, we obtain

(
YÞ0

B~y;j!5S 1

12j
2G~j! DB01S 1

12j
2

1

j
@G~j!21# D

3~B11B211B21B22!. ~95!

Then, combining Eqs.~92!, ~95! and ~40!, ~41!, ~44!, and
performing some straightforward but cumbersome calcu
tions, we find that in the limitj→12 and k→0, the sum
(YÞ0F* (0uenuY;j) is given by

(
YÞ0

F* ~0uenuY;j!52
p

~12j!ln~12j!
1•••, ~96!
1-12
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which is, remarkably, independent ofu and n in the leadingj order. Consequently, in the limitj→12 and k→0, the
generating functionV(k;j) obeys

V~k;j!'
p

~12j!2

2 ia0~E!k11
1

2
a1~E!k1

21
1

2
a2~E!k2

2

12 ln~12j!S 2 ia0~E!k11
1

2
a1~E!k1

21
1

2
a2~E!k2

2D . ~97!

Next, using the discrete Tauberian theorem, we obtain from the latter equation that in the limitn→` andk→0,

Vn~k!'p
S 2 ia0~E!k11

1

2
a1~E!k1

21
1

2
a2~E!k2

2D
11 ln~n!S 2 ia0~E!k11

1

2
a1~E!k1

21
1

2
a2~E!k2

2D n. ~98!
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Finally, inverting Eq.~86! with respect to the wave vector,

P n
(tr )~X,rv!'

1

4p2E2p

p

dk1E
2p

p

dk2

3exp~2 i ~k•X!2rvVn~k!!, ~99!

and taking advantage of Eq.~58!, we find that the leading
large-n behavior of the TP mean displacement is given b

X̄n;~pa0~E!rvn!e15
sinh~bE/2!

~2p23!cosh~bE/2!11
rvne1 ,

~100!

i.e., grows linearly with time. This signifies that the TP m
bility attains a constant value at sufficiently large timesn,

mn5 lim
uEu→0

uX̄nu
uEun

5
brv

4~p21!
. ~101!

Comparing Eq.~101! and the result of Brummelhuis an
Hilhorst @18# for the TP diffusivity in absence of the field
Eq. ~3!, we notice that again the Einstein relation is fulfille

Lastly, using Eqs.~98! and ~99! we derive the limiting
probability distribution function. We find then that in th
scaling limit n→`, rv→0 andrvn/ ln(n) fixed, the limiting
probability distribution written in terms of the scaling var
ablesh1 andh2, Eqs.~74!, obeys

P~h1 ,h2!5d~h1!d~h2!exp~2s!1
u~h1!

Ap

3expS 2s2h12
h2

2

h1
D I 1~2Ash1!,

~102!
03110
whereI 1(x) is the modified Bessel function of the first orde

VII. CONCLUSION

In conclusion, we have studied the dynamics of a char
tracer particle diffusing on a two-dimensional lattice, all sit
of which except one~a vacancy! are filled with identical
neutral, hard-core particles. The system evolves in disc
time n, n50,1,2, . . . , byparticles exchanging their position
with the vacancy, subject to the condition that each site
be at most singly occupied. The charged TP experience
bias due to an external fieldE, which favors its jumps in the
preferential direction. We determine exactly, for arbitra
strength of the fieldE5uEu, the leading large-n behavior of

the TP mean displacementX̄n , which is not zero here due to
external bias, and the limiting probability distribution of th
TP position. We have shown that the TP trajectories
anomalously confined and their mean displacement gr

with time only logarithmically,X̄n5@a0(E)ln(n)# e1 as n
→`. On comparing our results with the earlier analysis
the TP diffusivityDn in the unbiased case by Brummelhu
and Hilhorst@14#, we have demonstrated that, remarkab
the Einstein relationmn5bDn between the diffusivity and
the mobility mn of the TP holds in the leadingn order, de-
spite the fact that bothDn and mn tend to zero asn→`.
Note, however, that validity of the Einstein relation for th
system under study relies heavily on the proper normal
tion of the vacancy transition probabilities@see Eqs.~9!–
~11!#. In the absence of such a normalization, artificial ‘‘tem
poral trapping’’ effects may emerge, which will resu
ultimately in the violation of the Einstein relation for th
system under study~see also Refs.@27# and@28# for physical
situations in which such type of effects is observed!. We
have also presented a generalization of an approximate
scription of the TP dynamics on a two-dimensional latti
1-13
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with small but finite vacancy concentrationrv @18# for sys-
tems with external bias. In this case we have found for
TP mean displacement a ballistic-type law of the formX̄n
5@pa0(E)rvn#e1. We have shown that here, again, bothDn
andmn calculated in the linear inrv approximation do obey
the Einstein relation.
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APPENDIX

In this Appendix we list some explicit expression
skipped in the body of the manuscript. First of all, explic
form of the determinantD(k;j) in Eq. ~16! in terms of the
generating functions of the return probabilitiesAn,m
5An,m(j) reads
s are
D~k;j!512A2,2
2 12 A21,21A2,1A1,2A22,212A1,21A2,1A21,2A2,222 A2,21A22,2A1,2A21,12A1,21A21,1A2,2

2

1A1,21A21,1A22,2
2 1A1,21A21,12A21,21A1,12A21,21A1,1A22,2

2 1A21,21A1,1A2,2
2 22 A21,21A2,1A1,2A2,2

12 A2,21A2,2A1,2A21,122 A1,21A2,1A21,2A22,222 A2,21A2,2A1,1A21,212 A2,21A22,2A1,1A21,21A22,2
2

12~A2,21A1,2A21,11A1,21A2,1A21,22A21,21A2,1A1,22A1,21A21,1A22,22A22,21A21,21A1,1A22,2

2A2,21A1,1A21,2!cosk21~A21,1A2,2
2 2A21,112 A2,1A21,2A22,222 A2,1A21,2A2,22A21,1A22,2

2 !e2 ik1

1~2 A2,21A22,2A1,222 A2,21A2,2A1,21A1,21A2,2
2 2A1,212A1,21A22,2

2 !eik112 ~A1,21A22,2

2A2,21A1,2!e
ik1cosk212 ~2A2,1A21,21A21,1A22,2!e

2 ik1cosk2 .

Next, the coefficients in Eq.~46! defining asymptotical behavior of the generating functions of the return probabilitie
given explicitly by

A1,21
(1) ~u!5u2~u11!2@~p22!u222~p223p22!u1p22#,

A1,21
(2) ~u!52pu2 ~u11!2~u212u12p23!~~2p23!u212u11@~p22!u214u1p22#2,

A21,21
(1) ~u!5~4p2215p114!u42~6p2256p180!u31~8p2234p152!u21~2p228p116!u1p22,

A21,21
(2) ~u!52p ~u11!2@~2p23!u212u11#2@~p22!u214u1p22#2,

A2,21
(1) ~u!5u~p22!~u11!2@~2p23!u212u11#,

A2,21
(2) ~u!52p u~u11!2@~2p23!u212u11#@~p22!u214u1p22#@~p224p16!u41~2p226p18!u3

2~2p2220p128!u21~2p226p18!u1p224p16#,

A1,1
(1)~u!5u2@~p22!u41~2p228p116!u31~8p2234p152!u22~6p2256p180!u14p2215p114#,

A1,1
(2)~u!52u2p ~u11!2~u212u12p23!2@~p22!u214u1p22#2,

A21,1
(1) ~u!5~u11!2@~p22!u222~p223p22!u1p22#,

A21,1
(2) ~u!52p ~u11!2~u212u12p23!@~2p23!u212u11#@~p22!u214u1p22#2,

A2,1
(1)~u!5~p22!u~u11!2~u212u12p23!,

A2,1
(2)~u!52p u~u11!2~u212u12p23!@~p22!u214u1p22#@~p224p16!u41~2p226p18!u3

2~2p2220p128!u21~2p226p18!u1p224p16#,

A1,2
(1)~u!5u2~p22!~u11!2~u212u12p23!,
1-14
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A1,2
(2)~u!52pu2 ~u11!2~u212u12p23!@~p22!u214u1p22#@~p224p16!u41~2p226p18!u3

2~2p2220p128!u21~2p226p18!u1p224p16#,

A21,1
(1) ~u!5~p22!~u11!2@~2p23!u212u11#,

A21,1
(2) ~u!52p ~u11!2@~2p23!u212u11#@~p22!u214u1p22#@~p224p16!u41~2p226p18!u3

2~2p2220p128!u21~2p226p18!u1p224p16#,

A22,2
(1) ~u!52u@u21~2p22!u11#21~u11!2@~p26!u428u31~4p3216p222p128!u228u1p26#,

A22,2
(2) ~u!52p u~u11!2@~p224p16!u41~2p226p18!u32~2p2220p128!u21~2p226p18!u1p224p16#2,

A2,2
(1)~u!5u@u21~2p22!u11#21@~2p229p114!u61~4p3220p2146p228!u51~12p3266p21169p2142!u4

2~16p32168p21412p2312!u31~12p3266p21169p2142!u21~4p3220p2146p228!u12p229p114#,

A2,2
(2)~u!52p u~u11!2@~p224p16!u41~2p226p18!u32~2p2220p128!u21~2p226p18!u1p224p16#2.
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