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Ultraslow vacancy-mediated tracer diffusion in two dimensions: The Einstein relation verified
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We study the dynamics of a charged tracer parti@lB) on a two-dimensional lattice, all sites of which
except onga vacancy are filled with identical neutral, hard-core particles. The particles move randomly by
exchanging their positions with the vacancy, subject to the hard-core exclusion. In the case when the charged
TP experiences a bias due to external electric fiel@vhich favors its jumps in the preferential directjpwe
determine exactly the limiting probability distribution of the TP position in terms of appropriate scaling
variables and the leading largefn being the discrete timebehavior of the TP mean displacemé?n:; the
latter is shown to obey an anomalous, logarithmic IXM = a(|E|)In(n). Comparing our results with earlier
predictions by Brummelhuis and Hilhorgl. Stat. Phys53, 249 (1988] for the TP diffusivity D, in the
unbiased case, we infer that the Einstein relatign= 8D, between the TP diffusivity and the mobilify,,
:Iim‘E‘HO(|Yn|/|E|n) holds in the leading order, despite the fact that bolh, and », are not constant but
vanish am—o. We also generalize our approach to the situation with very small but finite vacancy concen-
tration p, , in which case we find a ballistic-type Iapm = may(|E|)p,n. We demonstrate that here, again,
both D,, and u,,, calculated in the linear ip, approximation, do obey the Einstein relation.

DOI: 10.1103/PhysRevE.66.031101 PACS nun)er05.40.Fb

[. INTRODUCTION [2—7]); frictional properties of dynamical percolative envi-
ronments[8,9]; or dynamics of impure atoms in close-
Consider a square lattice of which each site except one ipacked surface layers of metal crystals, such as, e.g., a cop-
filled with a hard-core particle. The empty site is referred toper[10—-13. Brummelhuis and Hilhordtl4] were the first to
as a “vacancy.” The particles move randomly on the lattice,Present an exact solution of this model in the lattice formu-
their random walks being constrained by the condition thafation. It has been shown that, in the presence of a single
each site can be at most singly occupied. More specificallyvacancy, the TP trajectories are remarkably confined; the
at each moment of time=1,2,3 ... oneparticle selected Meéan-square displacement shows an unbounded growth, but
with probability 1/4 among the four particles surrounding thelt 9rows onlylogarithmically with time,
vacancy will exchange its position with the vacancy. Next
suppose that one selects one of the particles, “tags” it, and Y2 In(n)
follows its trajectoryX,,. Evidently, dynamics of the tagged, " om(m—1)’
the tracer particléTP), will be quite complicated, in contrast
to the standard, by definition, lattice random walk executedyhich implies that the TP diffusivityd,,, defined as
by the vacancy: The TP can move only when encountered by
the vacancy and its successive moves will be correlated, X2 In(n)
since the vacancy will always have a greater probability to -n__ 7
return for its next encounter from the direction it has left than " 4n A4m(m—1)n’
from a perpendicular or opposite direction. On the other
hand, it is clear that on a two-dimensioiaD) lattice the TP is not constant but rather vanishes as timgrogresses.
will make infinitely long excursions as— even in the Moreover, it has been found 4] that at sufficiently large
presence of a single vacancy, since its random walk is recutimes, P{""(X) converges to a limiting form as a function of
sive in 2D and the vacancy is certain to encounter the tracehe scaling variable;=|X|/+/In(n). Still striking, this limit-
particle many times. A natural question is, of course, whajng distribution is not aGaussianbut a modified Bessel
are the statistical properties of the TP random walk, its meangnction K o( ), which signifies that the successive steps of
square displacement; from its initial position at time mo-  the TP, although separated by long time intervals, are effec-
mentn, and the probabilityPg”)(X) that at timen the TP  tively correlated. These results have been subsequently re-
appears at positioX = (X;,X)? produced by means of different analytical techniques in Refs.
The just described model, which represents, in fact, one df15-17.
the simplest cases of the so-called “slaved diffusion pro- Brummelhuis and Hilhorst have also generalized their
cesses,” has been studied over the years in various guiseanalytical approach to the case of a very small but finite
the “constrained dynamics” model of Palmgt]; vacancy- vacancy concentratiop, [18], in which case a conventional
mediated bulk diffusion in metals and crystalsee, e.g., diffusive-type behavior

as n—o, (1)
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v2_ pvn . |X |
Xn—m, py<1l, nN—x 3 wo=lim == (4)

has been recovered. Note that H§) coincides with the Now, the question is whether or not the mobiljy,, calcu-
earlier result of Nakazato and Kitahaf2] in the limit p, lated from the TP mean displacement in the presence of an
<1, and is well confirmed by numerical simulatiogs19].  external electric field, and the diffusivit®,,, Eq. (2), de-
Note that Egs(1)—(3) also reveal, as we have already duced from the TP mean-square displacement in the absence
remarked, essential correlations in successive moves of tha the field, obey the generalized Einstein relation of the
TP. To see this, one notices that in the absence of such coferm
relations the TP diffusion coefficient can be estimated as
Do~ wl/4, whereD refers to the TP uncorrelated random mn=pBD,, (5)
walk due to a single vacancy, 4 is the coordination number of
the square lattice, while stands for the mean frequency at where 8 denotes the reciprocal temperature.
which the TP performs the moves. The latter is evidently Note that this question has been already addressed within
equal to the frequency at which the TP is visited by thethe context of the TP diffusion in one-dimensiondD)
vacancy, i.e.w=7,/n with 7, being the mean number of hard-core lattice gases with arbitrary finite vacancy concen-
such visits during time. Since the vacancy performs a stan- tration[3,6,7,20,21 It has been found that E¢5) holds not
dard lattice random walk, one has~In(n)/= (see, e.g., Ref. only for the TP diffusion in a 1D hard-core gas on a finite
[5]) and, hence, discarding the correlations in successiviattice[3], but also for infinite 1D lattices with nonconserved
moves of the TP, we should finby~In(n)/4=n. On com- [7] and conserved particle numbdi®,20,21. Remarkably,
paringD, andD,, in Eq. (2), we observe that both show the in the latter case, E¢5) holds forn sufficiently large despite
samen-dependence but the prefactors are different, whicithe fact that both the TP mobility and the diffusivity are not
means that correlations are marginally important—they daonstant asn—o but all vanish in proportion to 1h
not change the dependence but renormalize the numerical[6,20,21. As well, the validity of the Einstein relation has
factors. It is customary to define the so-called correlatiorbeen corroborated for the charge carriers in semiconductors
factorf .o, [4,14] asf.,,,=D,/Dg as the property which, in [22] and for polymeric systems in the subdiffusive regime
essence, embodies all nontrivial physics and represents tti23,24]. On the other hand, it is well known that the Einstein
main challenge for the theoretical analysis of diffusion inrelation is violated in some physical situations; for instance,
interacting particles’ systems. For the model under study, oné is not fulfilled for Sinai diffusion[25] or diffusion on per-
has thaff .., = 1/(7—1)~0.467 . . . <1 and, hence, correla- colation clusters, due to effects of strong temporal trapping
tions induce a stronger confinement of the TP trajectories dui the dangling ends, as well as for the Scher-Lax-Montroll
to the enhanced probability of moves in the direction oppo-model of anomalous random waJR6] (see also Refd.27]
site to the direction of the preceding move. As a matter ofand[28] for some other examplgsHence, in principle, it is
fact, as shown in Ref14], for the square lattice the “effec- nota priori clear whether or not Eq5) should be valid for
tive” probability for the TP to step in the direction opposite the model under study; here, the TP walk proceeds only due
to its preceding move is 1/2, while the “effective” probabili- to encounters with aingle vacancy, its mean-square dis-
ties to step in a perpendicular direction or to step once morplacement grows onlipgarithmically with time, and the dif-
in the same direction amount only to 0.1816 and 0.1366fusivity follows a much faster decay law in E{), com-
respectively. Note finally that the same type of argumentgared to théD ,~n~ Y2 law obtained for the one-dimensional
apply to the result in Eq(3). Here, discarding correlations, systems with finite vacancy concentrations.
one expects thdd ,~ p/4 since the mean frequency of moves  The paper is structured as follows: In Sec. |l we present a
(which equals the mean frequency of the TP encounters witmore precise formulation of the problem and introduce basic
the vacanciesis proportional to the vacancy concentration. notations. In Sec. Il we discuss our general approach to
On comparing the latter estimate with the result in B}, computation of the probabilitPﬁ,")(X) of finding the TP at
one finds that they are related with exactly the same correlgositionX at time momenh, and to evaluat@ﬁl")(X) in the
tion factor. general form as a function of some return probabilities de-
This paper is devoted to the following, rather fundamentakcribing the random walk executed by the vacancy. Section
in our opinion, problem: Suppose that we charge the tracep is devoted to the calculation of these return probabilities
particle (while the rest are kept neutyaand switch on an in the general case, as well as to the derivation of explicit
electric fieldE. In such a situation, the TP will have asym- expressions determining their asymptotical behavior. In Sec.
metric hopping probabilities and in its exchanges with thev we present explicit asymptotical results for both the prob-
vacancy, depending on the TP and vacancy relative orientability distribution and the TP mean displacement. We show
tion, the TP will have a preferend@r, on the contrary, a that asn— o, pg“)(x), written in terms of two appropriate
reduction of the ratefor exchanging its position with the scaling variables, converges to a rather unusual limiting dis-
vacancy compared to the other three neighboring particlegribution. We also demonstrate here that the TP mobility,
One might expect that in this case the TP mean displacemegfhich is obtained in the present work in the leadingrder,
X, will not be exactly equal to zero and might define the TPand the TP diffusivity in the unbiased case, calculated earlier
mobility as by Brummelhuis and Hilhorgtl4], do obey the Einstein re-
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the neutral particles all jump directions are equally probable
and the jump direction probabilities are equal. The motion of
the tracer particle is affected by the applied electric field such
that it “prefers” to jump along its direction. The normalized
jump direction probabilities of thésolated TP are given, in
the usual fashion, by

py=z—1exr{§<E-ev)} ®)

whereZ is the normalization constang, is the unit vector
denoting the jump directionye{*+1,=2}, and E-e,)
stands for the scalar product. We adopt the notatiens
=(%*1,0) ande.,=(0,x1), which means tha¢, (e_;) is
the unit vector in the positivénegative x, direction, while
e, (e_,) is the unit vector in the positivénegative x, di-

FIG. 1. Two-dimensional, infinite in both directions, square lat- rection. Consequently, the normalization constauig
tice in which all sites except one are filled with identical hard-core

particles(gray spheres The black sphere denotes a single tracer B
particle, which is subject to external fielf| oriented in the positive z=2 exl{g(E'e,u)
X, direction, and thus has asymmetric hopping probabilities. The #

arrows of different size depict schematically the hopping probabili-
ties; a larger arrow near the TP indicates that it has a preference f
moving in the direction of the applied field.

, )

where the sum with the subscriptdenotes summation over
Al possible orientations of the vectey,, that is,u={=*1,
+2}. Note that the jump direction probabilities defined by

lation. Further on, in Sec. VI we extend an approximate de—EqS' (6) and (7) do preserve the standard detailed balance

scription of the situation with very small but finite vacancy condition of the form
concentratiorp, , proposed originally in Ref.18], over the B

case when the TP is subject to an external electric field, and pyexr{ - E(E-e,,)
determine the TP mobility in the leadimgand p, order. We

also show that in this case the TP mobility and the TP diffu-  Tyrning next to the evolution of the entire system, we first
sivity in the unbiased case do obey the Einstein relation, ithote that the choice of the “collective” transition probabili-
the linearp, approximation and in the leading order. AS  tjes ¢, is rather nontrivial. Similarly to the situation de-
well, for this situation we find the limiting probability distri- scribed in Ref[29], which concerned a biased dynamics of
bution of the TP position. Finally, in Sec. VII, we conclude the TP in a two-dimensional lattice gas, one expects a non-

=p- Vexr{g(E'ey) - ®

with a brief summary and discussion of our results. homogeneous particles’ density distribution around the TP.
This implies that, in particular, simple detailed balance rela-
Il. THE MODEL tion in Eq. (8) is invalid and the “true” detailed balance

condition would also involve average particles’ densities at

Consider a two-dimensional, infinite in boty and X2  tne sitesy and — v.

directions, square lattice, every site of which except Gme As we have already remarked, hard-core exclusion hin-
vacancy is filled by identical hard-core particlésee Fig. 1 ders the hopping motion of all particles, except for four

All particles except one are electrically neutral. The Chargeqwearest-neighbors of the vacancy. That is, for only four par-
particle, which is initially at the origin, will be referred to in  4jqjeg adjacent to the vacancy an attempt to jump might be
what follows as the tracer particle, the TP. Its position at they,ccessful. Then, the most natural choice coherent with the
lattice at timen will be denoted byX,,. Electric fieldE of  jyqividual dynamic rules is to assume that at each time step:
strengthE=|E| is oriented in the positive; direction. For (i) if the TP is not adjacent to the vacancy, one particle,

simplicity, the charge of the TP is set equal to unity. _chosen with probability 1/4 among four nearest-neighbors of
We suppose that every particle performs a random walk ifhe vacancy, exchanges its position with the vacancy: and

discrete timen, constrained by the single-occupancy condi- (il) if the TP is at the sit&,, and the vacancy occupies an

tion (hard-core exclusionin consequence, only those neigh- yjacent sitex, +e,, then the TP exchanges its position with
boring the vacancy particles can move. In order to specify,q vacancy with probability

dynamics of the system, we will distinguish here between

“individual” characteristics of the particle’s motion, and q_,=2Z%p,, 9
“collective” ones. By the term “individual” we presume

characteristics of isolated particles, while “collective” ones i.e., q_, is proportional to the probabilityp, of an isolated
describe the resulting evolution of the entire system. We firsparticle, Eq.(6), which mirrors its preference for jumps in
describe the individual characteristics of particles’ dynamicsthe direction of the applied field, while the probability of the
We suppose that each neutral particle performs a symmetriexchange of positions with any of the other three adjacent
random walk between nearest-neighboring sites. Hence, fareutral particles is given by
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1 been first put forward in the original work of Brummelhuis
qﬂ;er:ZZt : (100 and Hilhorst[14], that is, we construct the distribution func-
tion of the TP position at time directly in terms of the

The normalization factoZ* , dependent on the initial po- réturn probabilities of the random walk performed by the
sition », is chosen next from the condition that the vacancyvacancy. The only complication, compared to the unbiased

performs one jump each time step as it is prescribed in théaSe considered by Brummelhuis and Hilh¢fst], is that in
original model of Brummelhuis and Hilhorst. Such a condi- OUr case ten different return probabilities would be involved,

tion yields instead of three different ones appearing in the unbiased
case. Hence, the analysis will be slightly more involved.
Z*=(3l4+p,) L. (12) We begin by introducing some basic notations.
(i) Let P{"(X) be the probability that the TP, which starts
Also note that without impOSing such a condition we would its random walk at the Origin, appears at the 3itaat time
introduce artificial “temporal trapping” probability, which  momentn, given that the vacancy is initially at sit&,.
would definitely lead to a violation of EdS). _ (i) Let F*(0]Yo) be the probability that the vacancy,
Such a choice of the dynamic rules completely defines the hich starts its random walk at the sit,, arrives at the
time evolution of the system. Note that, apart from four Sitesorigin 0 for the first time at the time step
in the immediate vicinity of the tracer particle, the vacancy (iii) Let F*(0le,|Y,) be the conditional probability that

performs a standard, symmetric random walk. In the vicinity,[he vacancy, which starts its random walk at the Mg

of the TP, the vacancy jump direction probabilities are per'appears at the origin for the first time at the time step
turbed by the TP asymmetric hopping rules. Hence, the rarBeing at time momem—1 at the sitee
.

partcular case of the so-called random walk with defoctve. FUIIET on, for any time-dependent quantiy we define
P the generating function of the form

sites” (see Ref[5] for more detail, or as a realization of the
“random walk with a hop-over site[17]. +oo

L(&)=>, L&, (12)
IIl. PROBABILITY DISTRIBUTION FUNCTION  P{"(X) n=0

A standard approach to define the properties of the TRind for any space-dependent quan¥yX) the discrete Fou-
random walk would be to start with a master equation deterrier transform
mining the evolution of the whole configuration of particles.

In doing so, similarly to the analysis of the tracer diffusion

on 2D lattices in the presence of a finite vacancy concentra-

tion (see, e.g., Refl29]), one obtains the evolution of the

joint distribution P,(X,Y) of the TP positionX and of the where the sum runs over all lattice sites.

vacancy positiorY at time momenn. The property of inter- Now, following Brummelhuis and HilhorgtL4], we write

est, i.e., the reduced distribution function of the TP alonedown directly the equation obeyed by the reduced probabil-
will then be found fromP,,(X,Y) by performing lattice sum- ity distribution Pﬁf')(x) (cf. Ref.[16] for a study of the joint
mation over all possible values of the variaMe probability of the TP position and of the vacancy position in

Here we pursue, however, a different approach, which hathe unbiased cage

?(k):; expli(k-X))Y(X), (13)

n +oo Fo + o0 + o0
P‘n“><X>=6x,o<1—E FrOYo [+ 2 - 2 2 Snreim, im0 O 4ot X
j=0 p=1m;=1 mp=1 my, ;=0 P vy v "p
Mp+1
<1 3 PO |Fa O~ 0 i Ole ~a,)F8, O, V0. (1)

Next, using the definition of the generating functions and of the discrete Fourier transform&l Bgsd(13), we obtain the
following matricial representation of the generating function of the TP probability distribution:

P(k;£)= 1%5

1+D X k;6) 2 U,k €&)F*(0le,|Yo:é) |. (15)
M

In Eq. (15) the functionD(k; &) stands for the determinant of the following<4l matrix:

D(k;§)=detlI-T(k;&)], (16)

where the matrixT (k;§) has the elementsI(k;¢)),, , defined by
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(T(k;€)),, . =expli(k-&,))A, - .(£). 17

Explicitly, the matrixT(k; &) is given by

e 1A (&) e1A, ((€) e*1A; _5(£) e A, A £)
e MA_ (&) e ™MA () e AL (&) e MA_ A9

Tkio)=| i | ' ’ .
WOZ aien, (o) elenu) @A, o) RALE) o
e A, 1(§) eTMA 1§ eTRA L H(8) e A9
|
where the coefficientd,, ,(£), v,u==1,%£2, stand for £=0. We notice that, similarly to the unbiased case, this

pointisé=1 whenk=0. As a matter of fact, such a behavior
I e N N stems from thea priori nonevident fact that the vacancy,
Ay ul§)=F (O|e,,|eﬂ,§)—nzo Fr(Olefe)é", (19 starting from a given neighboring site to the origin, is certain
to eventually reach the origin. This will be demonstrated
i.e., are the generating functions of the conditional probabiliexplicitly in Sec. IV[cf. Eq. (48)]. As a matter of fact, one
ties for the first time visit of the origin by the vacancy, con- can see from Eq(48) and the explicit representation of
ditioned by constraint of the passage through a specified sitP(0;&) presented in the appendix th@(0;{=1)=0. In

+ o0

on the previous step. Note that, by symmetry, consequence, expansion in powers of a small deviation (1
—¢) has to be accompanied by a smalexpansion, exactly
Az (§)=A_2,(8), as it has been performed in R¢L4].
A=A, —2(§) (20)

IV. THE RETURN PROBABILITIES F{(0Ole,le,)

for v==1, and As we have already remarked, the vacancy random walk

A, A E)=A (&) between two successive visits of the lattice site occupied by
2 2z the TP can be viewed as a standard, two-dimensional, sym-
A, H(E)=A_,A8). (22) metric random walk with some boundary conditions imposed

on the four sites adjacent to the site occupied by the TP. In
As a result of such a symmetry, we have to consider just teerder to compute the return probabiliti€s) (Ole,|e,) for
independent function®\,, ,(£) (note that in the unbiased such a random walk, we add, in the usual fash®0], an
case one has to deal with only three such functigi®).  additional constraint that the site at the lattice origin is in an
Explicit expression of the determinant in E46) in terms of ~ absorbing state. Then, the vacancy random walk can be for-
these generating functions is presented in the Appendixnally represented as a lattice random walk with site-
Lastly, the matrixU ,(k; ) in Eq. (15) is given by dependent probabilities of the forpi* (ss’) = 1/4+q(sls'),

where s’ is the site occupied by the vacancy at the time
U (k&) =D(k:&)S (1—e itke)] —T(k;g)];ie‘(k'en). momentn, while s denotes the target, nearest-neighboring to

s’ site,
(22)
0 if s'¢{0,e.1,e.,},
The property of interest, the TP probability distribution func- ) ’¢{ 21,822}
tion, will then be obtained by inverting™(k: ) with re- a(§s)= ds0~ 14 if s'=0, 24
spect to the wave vectdrand to the variablé€: oq, if s=e, and s=0,
-6q9,/3 if s=e, and s'#0,
PIN(X)= — J dklf dk,
2im Cf" (2m) where 8q, is defined, according to Eq&9)—(11), by
x e0PM(k; ), (23 o 1
. . . - 80, = ——%-— . (25
where the contour of integratiadhencircles the origin coun- p,+3/4 4

terclockwise.

Finally, we remark that as far as we are interested in thg=yrther on, we defin®; (s/s) as the probability distribution

leading largen behavior of the probability distribution 5550ciated with such a random walk starting atsjtat step
PUM(X) only, here we may constrain ourselves to the study,—q_

Sf the asymptotic behavior of the generating function Now, let the symbolst, A, and B define the following
P(N(k:£) in the vicinity of its singular point nearest to three events.
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(1) The event: the vacancy, which has started its random
walk at the sites,, visits the originO for the first time at the
nth step exactly, being at the sitg, at the preceding step

n—1.

PHYSICAL REVIEW E66, 031101 (2002

Alsls: =€ P(s[s:6)a(s]s), (33

(2) The eventA: the vacancy, which started its random P(s|s;¢) being the generating function of the unperturbed

walk at the sitee,, is at the siteg, at the time momenh

—1 and the origin0 has not been visited during the-1
first steps of its walk.

associated random walkhat is, symmetric random walk
with no defective sites
Further on, Eq(31) can be recast into the following ma-

(3) The events: the vacancy jumps from the neighboring tricial form:
to the origin siteg, to the site0 at thenth step exactly.
Evidently, by definition, the desired first visit probability

+ _ -1
erigeto)s | Pt=(1-A)"'P, (34)
. ,/€,) is just the probability of the event

(26) in which equatiorP, P*, A stand for the 5 5 matrices with

* i
Fi (Ole,le,) =Prok(é). the elements defined by

To calculate Prok{) we first note that the probabilities of

three such events obey P i=P(sls:&), P/ j=P*(sls;:é), A j=Asls %

Prok &) = Pro AN B) = Prok A) Pro ). (27)

wherei,j=0,+1,—1,+2,—2. Next, using an evident rela-
On the other hand, we have that tion [5]
ProiA)=P,_y(e,le,) (28)
£
and P(sdsie)=d+ 7 2 P(sds+e,ié), (30
__Pu 5
Prol B) = (29) and the symmetry properties of a standard random walk, one

3/4+p,’ .
can readily show that:

Hence, by virtue of Eqs(26)—(29), the return probability (i) for s# s ands# s,

Fh(Ole,le,) is given explicitly by

4
Alsdsii€)= 3 dai(P(0[0;¢) ~ 1~ P(sds:€) + 10
(37

P
3/4+p,

F*(Oe,le,;6)=¢ P (ele,;6). (30

Therefore, calculation of the return probabilitie$(0le,|e,)
amounts to the evaluation of the probability distribution
P, (sls) of the vacancy random walk in the presence of an
absorbing site placed at the lattice origin. Such a probability
distribution will be determined in the next section.

(i) for g5 ands =5,

4 1
Alsdls ;€)= z€6q| P(0|0;6)— ?[P(0|0;§)—1]) ;

(38)
A. The generating function of the probability distribution
P*(d%) (iii ) for 5=+,
Making use of the generating function technique adapted
to random walks on lattices with defective si{&€$ and[31],
we obtain A(sds0:8) =Sk o= (1= §)P(s]0; ). (39

2
P'(sls;&)=P(sls ;§)+|Z A(sls;6)P"(sls;9), Consequently, the matricés andP in Eq. (34) are given
=2

b
@y
where a oqif Sq_.f Sqyf 6q,f
b 0 d8g_.e 89,c 689,C
g, forie{xl,x2}, q-1 gz [sp;
510, for i=0 (32 A=| b b9, 0 5g,c 5qxC . (40)
| | b oq,c 6g_,¢c O dgge
and b éq:c éq_,c b9 O
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where 4 2 1) 1
== -1+ 5+26(8)| 1- 5
a=1-(1-£)G(), TR R B
b=£[1—G(§)] 4 G(H—-1
3 fE§§ G(§)— 2 ) (41)
4
eE§[29(§)—1]. and
|
G(é) [G(H—1])/¢ [G(&H—-11/§ [G(E)—11/¢ [G(§—1]/¢
[G(§)—11/¢ G(§) G(§)—29(¢) (§) 7(§)
P=| [G(§)—1]/§ G(&)—29(¢) G(¢é) 7(€) 7(€) : (42
[G(§)—1)/¢ 7(§) (§) G(¢) G(§)—29(¢)
[G(§)—1]/¢ 7(§) (§) G(§)—29(¢) G(§)
|
with AL @y A@ ()
_ Vi v _ -1 _
1 A, u(8) S(u) ) (In(1-¢§))""+0(1-§),
G(&)=P(0 g(é)=- 5 [P(e]—e;¢)—P(0]0;¢)], (46)
whereu=exp(BE/2), All),(u) andAl?) (u) are some rational
2 2 . . PRy . - .
(&)= (——l) G(&) - ?-Fg(f) 43) fractions(all listed explicitly in the Appendix while

Note that Egqs(40) and (42) now define theP™ matrix ex-

S(u)={(mr—2)ub+(27?—67+12)u®
+ (872 — 257+ 34)u*— (47°— 607+ 88)u®

plicitly, and hence, define the generating function of the

probability distributionP* (gsp).

B. Asymptotic behavior of the generating functions of the
return probabilities in the vicinity of &=1

As we have already remarked, here we constrain our co
sideration to the analysis of the leadingrirbehavior; this

amounts to consideration of the leading in the ligit:1~

behavior of the corresponding generating functions. Expand-
ing G(¢&) and g(¢€) in the vicinity of the singular point

=1 (cf. Refs.[5] and[14,32,33), we have

8
G(@-—lnl—g—z—(l £N(1-9+0(1-9),

E—17 (44)

and

2
+—(1-9)In(1-)+O[(1- )],

B 4
9(5)—(2—;

E—17. (45)

Consequently, we find by solving the matricial equatigd)

+(8m2— 257+ 34U+ (27m2— 67+ 12u+ 7m—2}.
(47)

It follows from Eq.(46) and explicit expressions fa, ,(¢)
resented in the Appendix that, in particular, the generating
unctions of the return probabilities fulfill

Al 1(17)+A_; 1(17)+2A, 1(17)=1,
A (1) +A_1(17)+2A,4(17)=1,
AL A1) +A A1) +A L A1) +A(17)=1, (49

which relations imply that the vacancy, starting its random
walk from a given, neighboring the origin site, ¢ertain to
return eventually to the origin.

V. THE TP MEAN DISPLACEMENT AND THE
PROBABILITY DISTRIBUTION

In this section we proceed as follows: Taking advantage
of the asymptotical expansion obtained in the previous sec-
tion, we first determine the small (1¢) behavior of the

generating functioP(k; &), accompanied by the smal-
expansion. Next, we evaluate the generating function of the

that the generating functions of the return probabilities obeyTP mean displacement by differentiating the obtained
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where we have used the shortenings

components of the wave vector and analyze its lardee-

havior. Lastly, we invert the asymptotical expansion of the (m—2)(u—1)(1+u)’[u?+2(27—3)u+1]
i o) (|- ; ; Fi(u)y=—
generating functiorP*""’(k; £) and obtain the corresponding [u2+2(7m—1)u+1]S(u)
probability distributionP{"”(X) in a certain scaling limit. (50)
A. Asymptotic expansion of the generating functionP(k; &) (77—2)(1+u)4(u2+ 1)[u2+2(27-r—3)u+1]
Using the explicit representation of the determinant Fo(w)= 2[u2+2(7m—1)u+1]S(u) '
D(k;€) in Eqg. (16) in terms of the generating functions of (51)

the return probabilities\, ,

(&) presented in the Appendix,

as well as the asymptotical expansions in Etf), we find . 5
that in the vicinity ofé=1 and for small values of the wave u(m—2)(1+u)"[(27—3)u+2u+ 27— 3]
vectork, D(k;¢) is given by

D(k; &) =i Fy(u)ky + Fo(u)kZ+ Fa(u)K3
— F(win"Y1-&)+ -,

Fo)= [u?+2(7—1)u+1]S(u) ’
(52)
(49 and
|
m(m—2)(1+u)* (27— 3)uP+2u+ 27— 3][u2+2(2m— 3)u+1] | -

Fa(u)

[u?+2(7—1)u+1]S(u)

and assumed, for simplicity, that the starting porigtof the B. The TP mean displacement for arbitrary field strength E

vacancy random walk i¥,=e_

find that

EV U, (k;&)F* (0le,|—ey; €)= —i Fi(u)ky— Fo(u)K?

— Fy(u)ks+

1- On the other hand, we  ag 3 matter of fact, the leading largeasymptotical be-

havior of the TP mean displacement can be obtained directly
from Eg. (55) since the generating function of the TP mean
displacement, i.e.,

+ o0

(54) X()= 2, Xné" (57)

Consequently, in the smalldimit and é— 17, the generating
function P()(k; &) obeys

1 1 1
PU(K; )= 1 J (—iaok1+§a1ki+§a2k§ = i &P(”’

-1
><In(1—§)} ,

where the coefficients

obeys(see, e.g., Ref4])

aP(”)
—(Coet S (008, (5§

X(§)=—

(55)
Consequently, differentiating the expression on the right-
hand side of Eq(55) with respect to the components of the
wave vectork, we find that the asymptotical behavior of the
generating function of the TP mean displacement in the vi-

ao(E)=7"1sinh BE/2)[ (27— 3)cosi BE/2)+ 1] 1, cinity of é=1" follows

a,(E)=7"tcosh BE/2)[ (27— 3)cosh BE/2)+ 1] %,

az(E

7 Y cosBE/2)+2m—3]?

(56) X()~ ( alo_E) In %) e. (59)

Further on, using the discrete Tauberian theoref Ref.

are all functions of the field strengtd and of the tempera- [5]) and Eg. (56), we find the following general force-

ture only.

velocity relation for the system under study,
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Xp~(ao(E)Inn)e,

1 sinh( BE/2)

=\ 7 @a=3)cosigE+1 "

€, as n—o,

(60)

which shows that the TP mean displacement grows

logarithmically with n. Consequently, one may claim that
the typical displacement along tle direction scales as Inf
asn—o. On the other hand, typical displacement in e
direction is expected to grow only in proportionytn(n), as
in the unbiased cadd4]. These claims will be confirmed in
what follows by the form of the scaling variables involved in
the limiting distribution.

Consider next the behavior of the coefficienf(E) in the
limit E—0. Here, we find from Eq(56) that

BE

4mr(m

ag(E)= ~1)

+O(E®), (62)

and hence, the mobility,,, defined in Eq(4), follows

B In(n)

du(m—1) n @ ¥

Mn™ (62)

Comparing next the result in E¢62) with that for the dif-
fusivity D,,, Eqg. (2), derived by Brummelhuis and Hilhorst

[14] in the unbiased case, we infer that the TP mobility and™?

diffusivity do obey, at least in the leadingorder, the gen-
eralized Einstein relation of the forpa,= 8D, [3]. Note that
this cannot be, of course, anpriori expected result, in view

PHYSICAL REVIEW E 66, 031101 (2002

[ ; 1 2 1 2 o
1—( ~iag(E)ky+ 5 ay (E)KE+ Ea2(|5)|<2)|n(1—g)

+ o

-,

1 2

dv ex;{—v( 1—( —iag(E)ky+ %al(E)ki

(64)

|n(1—§)”,

we cast the integral in Eq63) into the form

;Jerd exp — )
-pemile VERTY

<[

Xexr{%(al(E)k + ap(E)K)IN(1— &)

PID(X;6)~

+ o
dk, f dkoexp( —ikoX,)

—ikl[x1+va0(E)In(1—§)]). (65)

Note now that in order to evaluate explicitly the Gaussian
integral in Eq.(65), we have to consider separately two
cases: wherta) the external field in infinitely stronds =«
(which implies@,=0), such that the TP performs a totally
directed walk, andb) whenE is boundedE << (and hence,
>0).

1. Directed walk, BE=

We start with the simplest case when the TP performs a

of an intricate nature of the random walks involved andtotally directed walk under the influence of an infinitely

anomalousjogarithmic confinement of the random walk
trajectories.

C. Probability distribution P{"(X)

We turn next to calculation of the asymptotic forms of the

probability distributionP{""(X). Inverting P(")(k;&) with
respect tk, we notice first that in the limig— 1"~ the inte-
grand is sharply peaked arourd=0, such that the bulk
contribution to the integral comes from the vallgs-0 and
k,=0; this implies that we can extend the limits of integra-
tion from = 7 to =, which yields in the limité—1":

P(")(X;§)~; fmfmdkldkz
(1=§)2m)? J-= )=
Xexp(—ikix;—ik,Xs)

1
X 1—(—ia0(E)k1+§a1(E)k§

1 ) -1
+ EaZ(E)kz) In(1— g)] : (63

Further on, using the integral equality

strong field. In this case, the probability distribution is de-
fined for non-negativex; values only, and Eq65) reduces
to

5(Xz 9(X1)

J’ dv exp(—v)
><fﬂdkleX[{%al(E)kiln(l—g)

_ikl[xl“‘vao(E)'n(l_f)]). (66)

where 6(x,;) denotes the Heaviside theta function. Perform-
ing the integrals, we find that, in the limi—1", the gen-
erating functionP")(X; £) obeys
PUI(X;€)~ = 8(x2) 0(X1)
y m(27—3)
(1-9In(1-¢)

m(27—3)
In(1-§)

o)

o
(67)

Applying next the discrete Tauberian theordf34], we
find, eventually,
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) w(27—3) w(27—3) Finally, using the discrete Tauberian theorg#84], we find
Pn/(X)~é8(x2) 0(X1)WEXF{ O 1), from Eq.(72) that in the larges and largeX limits, the prob-
Sy it it (tr)
(69) ability distribution P}’ (X) obeys
which means that in the totally directed case, in the large- PII(X) ~(mVay(E)ay(E)In(n))
and largex; limit, the scaled variable n.,=m(27 (E)
—3)x4/In(n) is asymptotically distributed according to Xexr{%xl) Kol 7e(n)]. (73
ay
P o0 =0 %) EXA — M), 69 . . . .
(7= 0Cn-)exp(=r-) 9 Note that in the unbiased case, i.e., witen 0, the probabil-
i.e., has an exponential scaling function. ity distribution Pffr)(X) defined by Eqs(72) and (73) re-
duces to the form predicted earlier by Brummelhuis and Hil-
2. Arbitrary bounded field E< horst[14].

In this case the coefficient,>0 and the probability dis-
tribution is defined also for negative values>f, as well,
P(N(X:¢) is defined also for nonzero values %f. In this Now, we recollect that the scaling behavior expected is
general case, we find, performing integrations over the comx;~In(n) (for E>0)andx,~ yIn(n). In order to obtain from
ponents of the wave vector, th&()(X:;¢) attains, as¢  Egs.(72) and (73) the limiting probability distribution, we

3. Limiting probability distribution function

—17, the following form: introduce two scaling variables:
PI(X;€)~ = (2m(1= §)In(1- &) Vay (E) az(E)) m=/ao(E)in(n),
T]ZEXZ/\/Zaz(E)ln(n). (74)

xfmd - !
o v exp v)ex m

Note thatn,; becomesy., in the special casE=oc. In terms

Xy ao(E) 2 of these scaling variablegg(n) in Eq. (72) takes the form
+ In(1—
(al(E) Yo @™ f)) o ) (772)2
n)=—— In(n +———1+|—
n X2 )2“ (70 e ay(E) & ag(E)In(n) i
ay(E) '
2
The integral in the latter equation can be calculated exactly, +O[1In (n)]} : (75)
which yields
B Note now that for arbitrary fixedy, and »,, the argument of
PUD(X;€)~ — (m(1=&)In(1— &) Vay(E)an(E)) the Bessel functionyg(n) written in terms of the scaling
variables tends to infinity as— . Consequently, using the
xexp ——=X1 | Kol 7l =1, (72 limiting behavior of the modified Bessel function
ay(E) 1-¢ "
a
where K, is the modified BesselMcDonald function of Ko(y)=(2— exp—y)[1+O(1kl)], (76)
zeroth order, and y
, 5 , we find that the probability distributioR{"(X), written in
(\)= \/ 2 i ao(E) X1 i X2 (72 terms of the scaling variables, convergesms~ to the
e INN) " ay(E) Y ay(E)  an(E) limiting form
|
() x) ~ [27a(E) e(E) 72in(n)]™2expt — 7= 73/ 1) for 7,>0, )
n "o, for ,<0,

or, equivalently, that the scaling variablegs and 7, have the vyields, of course, the same result for the TP mean displace-
following, rather unusual limiting joint distribution function: ment as the approach based on differentiation of the asymp-
totical expansion of the generating function. We also remark
(1) 77% that the reduced distributionB( ;)= fd»,P(71,7,) and
P(1,7m2) = T SR T ) (78 p(y,)=[dnP(71,7,) take the form

We note that this distribution is properly normalized and P(7n)=0(n)exp(— n4),
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P(7,)=exp(—2|7,|), (79 adjacent sites or have common neighbors contribute only to
O(pﬁ) and thus go beyond their approximation. Conse-
and hence the reduced distributi®»,) appears to be ex- quently, such details can be safely neglected when one fo-
actly the same as in the cage=o°. cuses on the linegs, approximation only.

Now, we briefly outline the basic steps involved in the
approach by Brummelhuis and Hilhorsf18]. Let
PUOXIYE, Y, ... YWy denote the probability of find-

In this last section we turn to the situation when vacanciesng at time momenh the TP at positiorX as a result of its
are present at a very small, but finite concentrapign We interaction with allM vacancies. This probability can be rep-
base our analysis on the model and approximate analyticaksented as
approach proposed by Brummelhuis and Hilhorst in Ref.

[18], generalizing it over the case when the TP experiences a P(tr)(X|Y(l) y@ Q)
bias due to external electric field. In their approach, Brum- n 0 700
melhuis and Hilhorst decoupled the joint probability distri-

VI. FINITE VACANCY CONCENTRATION

bution of the TP and vacancies into the product of pair dis- = %) e %) 5x,xgl)+...+xg“")7’fwtr)

tribution functions. This approximation is appropriate when Xo Xo

p,<<1 and yields meaningful results for the TP mean square ><(X(l) x@ ... X(M)lY(l) Y@ Ly
displacement in which the prefactor is evaluated only to the 0 70 0 R0 R0 e R0
leading order in the concentration of vacancies. As a matter (80
of fact, such an approximation is tantamount to the so-called

Smoluchowski approach, well-known in the literature on thewhere ~ P(X(V X@, ... xM|y(D y@ =y

evolution of the reaction-diffusion systentsee, e.g., Ref. stands for the conditional probability that within the time
[35] and references therginMaking use of their approach ntervaln the TP has displaced to the positigfy" due to

ahnd the S?SU,'LS of prfewogs se.ct|or:1s S_O”sz'“g the fodrm Ofhteractions with the first vacancy, to the positis§f’ due to
the pair distribution functions in the biased case, we detely,q intaractions with the second vacancy and etc.

mine the TP mean displacement in the presence of an exter- Next, the main assumption of RefL8] is that all the

r_1a| electrl_c f'?'d- This mean displacement is ShOW” t0 grow, 4 cancies contribute independently to the TP displacement.
linearly W't.h time, and we calculate _the prefactor n this de-pp5¢ is, events in which two or more vacancies appear simul-
pendence in the linear with, approximation. We verify the (anaqusly at the sites adjacent to the TP are simply being

validity of the_ Einstein re"’?‘“‘.’?‘ for this _rr_wode_l a?”d _also discarded. Under such an assumption, the conditional prob-
present an estimate of the limiting probability distribution. ability ,P(tr)(xgl) ng) XgM)|Yg1) Ygz) YgM)) can
n ’ 1 oee ey ) y e

' .The “?Ode' OT Refl 18] IS deflr]ed. as follows, Con;@er a pe approximated as a product of two-particle distribution
finite lattice of sizel. X L with periodic boundary conditions, :
. : . functions
containingM vacancies. The mean concentration of the va-
cancies is thup,=M/L?, and is supposed to be very small,

1 2 M 1 2 M
p,<1. The TP is initially located at the origin and initial PO X, XEVIYED YR, )
positions of the vacancies are denoted by M

1) yv(©@) (M) i ; . .
Yol Yol oo Yy, WhICh all are d|ffe_rent from each other ~H PU(XPIYY), (81)
and fromO. All other sites are filled with neutral hard-core =1

particles. Note that additionally to the definition of the model
in Ref.[18] we also suppose the TP is charged and is subjegghere P("(X{|Y(?) denotes the probability of finding the
to external electric fieldE, which is oriented in the positive 1p 4t the sitex{) at time moment due to interactions with
X4 direction. a vacancy initi Gy ; ; :
. , . . i y initially atyy’ in a system with a&inglevacancy.
Further on, the particles’ dynamics in RE18] is defined As we have already remarked, the situations in which two or

:_2 the follrlloyvmg JVHa}I/h S'T"?r t? tth(tah stln(;:][Ie vactgncy tcase,l ore vacancies appear at the adjacent sites or have common
rummetnis and Fihorst stipuiate that at each time step, a eighbors contribute only t(D(pf). Consequently, the ap-

vacancies exchange their positions with either of the ne'gh'ﬁoximation in Eq.(81) would yield correct results to the

boring particles, such that each vacancy makes a step eagrderO(pv), and is quite reasonable whep<1.

time step. Note that when many vacancies are present, it may 1 .

: . Further on, combining Eq$80) and (81), and averagin
of course appear that two or more vacancies occupy adjace t(t,)(le(l) Ve Y?M))qgve)r initiél \Bacanc confgi] ug-
sites or have common neighboring particles, in which case n 0 70 »-x-170 y 9

their random walks will interfere. This requires, in turn, defi- rations, one hagl8]

nition of complementary dynamic rules describing evolution

of configurations with vacancies appearing at adjacent sites. (P (X|Y{, Y2, ... y(My)
Such a definition is of course possible, but is not, however,

M
necessary, since in view of the decoupling approximation _ () v (D1 ()
underlying the model solution only consideration of the pair Nx(l) o 'X(EM) 5X'X51)+'“*XBM)J»11 (PR (Xg"IY0")-
distribution functions is required. As also noticed in Ref. 0 0
[18], the situations in which two vacancies appear at the (82
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Now, defining the Fourier transformed averaged distribu- 1 .
tions as A(k|e,,;§)le§ 1-exdi(k-e,)]
Atr) - i 1
Py (k,M,L)—; exfi(k-X)] X 1—|n(1—§)(—iao(E)kl+§a1(E)k§

X(PU(X| Y Y@y My (83 —1

1
+Ea2(E)k§) +oo (92)
and
~ . . . Consider next the form oEy..oF*(0|e,|Y;&) in the limit
PID(k) =2 exdi(k-X)W(PYY(X|YED)), (84 &1, k—0. This sum can be evaluated rather straightfor-
% wardly by taking advantage of the results of Sec. Ill. We
and performing the corresponding summations, one find8ave then
that

P, _
3,4+py) 2 P'(e)Y:8)

Y#0

ﬁtr)(k,M,L)%(ﬁgr)(k))M. (85) YE¢OF (0|ev|Y-§):§

P,

. . . . . 2
Turning next to the limitL,M —oo (while the ratioM/L Bt(l_A)flz B(Y:¢8),
3/4+ P, v YZ0

=p, is kept fixed, we obtain

=&

P(k,p,) = lim PEI(k,M,L)~exp - p,Qn(K)), -
LM—e (86) where B, is the vth basis vector3!, denotes the transposi-

tion of 5,, and B(Y;¢) is the vector, whose elements are

where [P(s]Y;&)]i, i=0,1—-1,2—-2. Explicitly, the basis vectors
. are given by
Qn<k)Ej§0 2 Anj(Kle) 2 Fr(Oe)Y),  (87) 1 0 0
0 1 0
An(kle,)=1-P{"(k|—e)exdi(k-e,)], (89 B=| 0|, B=[0|, B.,=|1],
Fr(0le,|Y) are conditional return probabilities, defined in 0 0 0
Sec. Ill, andP{" (k| —e,) is the Fourier transformed single- 0 0 0
vacancy probability distributio{""’(X|—e,). The latter can
be readily obtained by applying the discrete Fourier transfor- 0 0
mation to the relation 0 0
n B,=| 0|, B_,=|0 (93
P‘n”)(X|Y>:5x,o( 1-2 F,*<0|Y)) 1 0
i=o
0 1
n
+]ZO EV P{Di(X—e,|—e,)F} (0lg,]Y) Further on, using an evident symmetry relation
(89 P(si|Yi;:&)=P(Yilsi; &), (94
and choosingr =—e,. as well as the relation in E¢36), we obtain
Note now that the presented derivation is quite general
and valid for the arbitrary choice ¢f, (q,). We focus now a1 1 1
on the case under study, i.e., when the TP experiences 3;0 Bly:§)= 1_g_G(§) Bo+ 1_§_E[G(§)_1]

constant bias due to external electric field, and stipulate that
q, obeys Eqs(6)—(10). For such a choice af, we find that X(By+B_1+ B+ B_5). (95

the generating function d,(k) is given by o
Then, combining Eqs(92), (95 and (40), (41), (44), and

performing some straightforward but cumbersome calcula-
Q(k;g):EV: A(k|e,,;§)z,o F*(Ole]Y:&). (90 tions, we find that in the limit—1~ and k—0, the sum
Sv4oF*(0le,|Y;§) is given by
Further on, turning to the asymptotical limft—1", k—0
and making use of the results of the previous sections, we S F*(0le,|Y:é)=
Y#0

have thatA (k|e,; £) follows e (96)

I
(1-§)In(1-¢) '
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which is, remarkably, independent of and v in the leadingé order. Consequently, in the lim§—1~ and k—0, the

generating functiof)(k; &) obeys

H 1 2 1 2
_|C¥0(E)kl+ Eal(E)k1+ Eaz(E)k2

Q(k;¢)

~ . (97)
(129" | in(1— &) —iao(E)ket = an(E)CH = an(ENKE
0 1 201( K1+ 2“2(E) 2
Next, using the discrete Tauberian theorem, we obtain from the latter equation that in the-timitandk— 0,
R 1 2 1 2
—lag(B)kt 5 ay(B)ki+ 5 ax(E)k;
n. (98)

Q, (K~

Finally, inverting Eq.(86) with respect to the wave vector,

1 T T
(tr) ~—
PP~ | k[ i
X expl—i(k-X) ~p, (k) (99

and taking advantage of E¢8), we find that the leading,
largen behavior of the TP mean displacement is given by

_ 3 sinh( BE/2)
Xn~ (mao(B)pN) e =y s AE2) + 1P

i.e., grows linearly with time. This signifies that the TP mo-

bility attains a constant value at sufficiently large tinmgs

T |)?n| pr
mn=lim

eoEIn a(r—1)° (103

Comparing Eq.(101) and the result of Brummelhuis and
Hilhorst [18] for the TP diffusivity in absence of the field,

Eq. (3), we notice that again the Einstein relation is fulfilled.

Lastly, using Egs(98) and (99) we derive the limiting
probability distribution function. We find then that in the
scaling limitn—«, p,—0 andp,n/In(n) fixed, the limiting
probability distribution written in terms of the scaling vari-
ables#; and 7,, Eqs.(74), obeys

6
P(71,m2)=0(11) (n)exp — o)+ (\/77;1)
2
xexp( — o= nN1— Z_j)ll(z\/o”’ll),

(102

: 1 2 1 2
1+In(n)( —iag(BE)ky+ Eal(E)kl-i— Eaz(E)kz)

|
wherel ;(x) is the modified Bessel function of the first order.

VIl. CONCLUSION

In conclusion, we have studied the dynamics of a charged
tracer particle diffusing on a two-dimensional lattice, all sites
of which except onga vacancy are filled with identical
neutral, hard-core particles. The system evolves in discrete
timen,n=0,1,2 ..., byparticles exchanging their positions
with the vacancy, subject to the condition that each site can
be at most singly occupied. The charged TP experiences a
bias due to an external fiel, which favors its jumps in the
preferential direction. We determine exactly, for arbitrary
strength of the fiel&E=|E|, the leading large behavior of

the TP mean displacemeXt,, which is not zero here due to
external bias, and the limiting probability distribution of the
TP position. We have shown that the TP trajectories are
anomalously confined and their mean displacement grows

with time only logarithmically, X,=[ ao(E)In(n)] €, asn
—o0. On comparing our results with the earlier analysis of
the TP diffusivity D, in the unbiased case by Brummelhuis
and Hilhorst[14], we have demonstrated that, remarkably,
the Einstein relationw,= 8D, between the diffusivity and
the mobility u,, of the TP holds in the leading order, de-
spite the fact that botlD,, and u,, tend to zero ag1—co.
Note, however, that validity of the Einstein relation for the
system under study relies heavily on the proper normaliza-
tion of the vacancy transition probabilitidsee Eqs.(9)—
(11)]. In the absence of such a normalization, artificial “tem-
poral trapping” effects may emerge, which will result
ultimately in the violation of the Einstein relation for the
system under studisee also Ref§27] and[28] for physical
situations in which such type of effects is obsernved/e
have also presented a generalization of an approximate de-
scription of the TP dynamics on a two-dimensional lattice
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with small but finite vacancy concentratigry [18] for sys-  and Professor J. Talbot for valuable comments on the manu-
tems with external bias. In this case we have found for thescript.

TP mean displacement a ballistic-type law of the faxp

=[mag(E)p,n]e;. We have shown that here, again, bbth

and u, calculated in the linear ip, approximation do obey APPENDIX

the Einstein relation. , , ) . ,
In this Appendix we list some explicit expressions

skipped in the body of the manuscript. First of all, explicit
ACKNOWLEDGMENTS form of the determinanD(k;¢) in Eq. (16) in terms of the
The authors wish to thank Professor H. Hilhorst for help-generating functions of the return probabilities, ,
ful discussions. We are also very grateful to Dr. S. Nechaev=A, ,(§) reads

D(k; ) =1=AZ+2A 1 1A AL A 55+ 281 A2 A 1 A2 2 A 1A 2 AL A 11— A 1A 10AS
FAL A AT o AL A T AL AL AL ALAT AL 1ALAS 2 A 1A AL A
2R 1 A2 ALA 112 A0 1AL A 1A 22 Ag 1As ALA 12 A0 1A 5 ALA T AY 2.2
T2(A2-1A1A 11t AL 1A A 1 Al 1A AL AL 1A 1A 2 Aot AL 1ALIA 2,
— Az 1A11A 1 )COSKy+ (A 1,1A§,2_ A_1at2A0A 1A 52 A0 A 1 A~ Al A e
F(2A5 1A 2A1,72A5 1A A1 T A - 1A§,2_ Ap_1— A A% 221+ 2 (A; 1A 5,
—A,_1A19)e*1c0SKo+2 (— Az A 1+ A 1A e Kicosk,.

Next, the coefficients in Eq46) defining asymptotical behavior of the generating functions of the return probabilities are
given explicitly by

AL (u)y=uP(u+ 1) (m—2)u=2(m?—3m—2)u+7—2],
AP (u)=—7u? (u+1)2(u2+2u+ 27— 3) (27— 3)u?+ 2u+ 1[ (m— 2)u?+ 4u+ 7—2]?,
AY) _(u)= (472~ 157+ 14 u*— (62— 56m+ 80)u’+ (87— 34w+ 52 u+ (2m2— 8w+ 16)u+ m— 2,
A®) (u)=—7 (u+ D) (27 —3)u?+2u+1]%[(m—2)u’+4u+ 7—2]?,

AL (u)=u(m—2)(u+1)q (27— 3)u?+2u+1],

A [(u)=—mu(u+1)’[ (27— 3)u+2u+1][(7—2)u+du+ 7—2][(7°— 4w+ 6)u*+ (272 — 67+ 8)u®

— (272 —20m+28)u’+ (2m?— 67+ 8)u+ w2 — 4w+ 6],
AR(U) = (7—2)ut+ (272~ 8+ 16)u3+ (872 — 347+ 52)u?— (62— 56+ 80)u+ 42— 157+ 14],
AB(U) = — U2 (Ut 1)U+ 2u+ 27— 3)2[ (71— 2) U2+ Au+ 71— 212,
A ()= (u+ )Y (7= 2)u2—2(m2— 37— 2)u+7—2],
A®) ()= —a (u+1)2(u+2u+27—3)[(27—3) U2+ 2u+1][(7—2)u?+ 4u+ 7—2]?
=11 ,
ASD(u)= (m—2)u(u+ 1)U+ 2u+ 27— 3),

AP)(u)=—mu(u+ 1)} (u+2u+27—3)[(m—2)u+4u+ 7—2][ (72— 47+ 6)u’+ (272 — 67+ 8)u®

—(27%—20m+28)u+ (2m?— 67+ 8)u+ w2 — 4+ 6],
AL (U)=U2(7—2)(u+ 1)2(u2+2u+ 27— 3),
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AP (u)=—mu? (u+1)2(u2+2u+27—3)[(m—2)u?+4u+ m—2][ (m?— 47+ 6)u*+ (2m?— 6w+ 8)u®
— (272 =207+ 28)u+ (2m°— 67+ 8)u+ w’— 47w+ 6],
A (u)=(m—2)(u+ 1) (27— 3)u?+2u+1],

A®) (u)=—m (u+1)2[(2m—3)uP+2u+1][(m—2)u?+4u+ 7—2][(7?— 47+ 6)u*+ (27> — 67+ 8)u®
— (272 =207+ 28) U+ (22— 67+ 8)u+ w2 — 47+ 6],
A (u)=—u[u?+ (27—2)u+1]"Y(u+ )Y (7—6)u*—8ul+ (47°— 1672 — 27+ 28)u’— 8u+ 7— 6],
AP (u)=—mu(u+ D) (m?—4m+6)u+ (22— 67+ 8)ud— (27— 207 + 28) U+ (2% — 6w+ 8)u+ w2 — 4w+ 612,
ASB(u)=ulu?+ (27 —2)u+1] (272 = 9m+ 14 ub+ (47°— 2072+ 467 — 28) U+ (127° — 667>+ 1697 — 142 u*
— (1673 —168m%+ 412 — 312)u+ (1273 — 6672+ 169 — 142U+ (47> — 2072+ 467 — 28)u+ 2> — 9+ 14],

AP (u)=—mu(u+1)?[(m?— 47+ 6)u+ (2m°— 67+ 8)us— (2% — 207 + 28)u’+ (272 — 6+ 8)u+ 72— 47+ 6]°.
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